Astronomy&Astrophysicsmanuscriptno.ov-language cESO2016 (cid:13) January8,2016 Calibrating convective-core overshooting with eclipsing binary systems The case of low-mass main-sequence stars. G.Valle1,2,3,M.Dell’Omodarme3,P.G.PradaMoroni2,3,S.Degl’Innocenti2,3 1 INAF-OsservatorioAstronomicodiCollurania,ViaMaggini,I-64100,Teramo,Italy 2 INFN,SezionediPisa,LargoPontecorvo3,I-56127,Pisa,Italy 6 3 DipartimentodiFisica"EnricoFermi”,UniversitàdiPisa,LargoPontecorvo3,I-56127,Pisa,Italy 1 0 Received17/09/2015;accepted21/12/2015 2 n ABSTRACT a J Context.Double-linedeclipsingbinarieshaveoftenbeenadoptedinliteraturetocalibratetheextensionoftheconvective-coreover- 7 shootingbeyondtheborderdefinedbytheSchwarzschildcriterion. Aims.Inarobuststatisticalway,wequantifythemagnitudeoftheuncertaintythataffectsthecalibrationoftheovershootingefficiency ] parameter β that is owing tothe uncertainty on the observational data. Wealso quantify the biases on the β determination that is R causedbythelackofconstraintsontheinitialheliumcontentandontheefficienciesofthesuperadiabaticconvectionandmicroscopic S diffusion. Methods.Weadoptedamodifiedgrid-basedSCEPtERpipelinetorecovertheβparameterfromsyntheticstellardata.Ourgridspans . h themassrange[1.1;1.6] M andevolutionarystagesfromthezero-agemainsequence(MS)tothecentralhydrogendepletion.The p β estimates were obtained b⊙y generalising the maximum likelihood technique described in our previous works. As observational - constraint,weadoptedtheeffectivetemperatures,[Fe/H],masses,andradiiofthetwostars. o Results.BymeansofMonteCarlosimulations,adoptingareferencescenarioofmildovershootingβ = 0.2forthesyntheticdata, r t andtakingtypicalobservationalerrorsintoaccount,wefoundbothlargestatisticaluncertaintiesandbiasesontheestimatedvalues s of β. For thefirst 80% of the MS evolution, β isbiased byabout 0.04, withthe1σ error practically unconstrained in thewhole a − exploredrange[0.0;0.4].Inthelast5%oftheevolutionthebiasvanishesandthe1σerrorisabout0.05.The1σerrorsaresimilar [ whenadoptingdifferentreferencevaluesofβ.Interestingly,forsyntheticdatacomputedwithoutconvective-coreovershooting,the 1 estimatedβisbiasedbyabout0.12inthefirst80%oftheMSevolution,andby0.05afterwards.Assuminganuncertaintyof 1in v thehelium-to-metalenrichment ratio∆Y/∆Z,wefoundalargesystematicuncertaintyintherecoveredβvalue,reaching0.2a±tthe 5 60%oftheMSevolution.Takingintoaccountboththeheliumabundanceindeterminationand1σstatisticaluncertainty,wefound 3 that intheterminalpart of theMS evolutiontheerror on theestimatedβvalues ranges from 0.05to+0.10, whileβisbasically − 5 unconstrainedthroughouttheexploredrangeatearlierevolutionarystages.Wequantifiedtheimpactofauniformvariationof 0.24 ± 1 inthemixing-lengthparameterαml aroundthesolar-calibratedvalue.Thelargestbiasoccursinthelast5%oftheevolutionwithan 0 errorontheestimatedmedianβfrom 0.03to+0.07.Inthislastpart,the1σuncertaintythataddresses statisticalandsystematic − . errorsourcesrangesfrom 0.09to+0.15.Finally,wequantifiedtheimpactofacompleteneglectofdiffusioninthestellarevolution 1 computations.Inthiscase−,the1σuncertaintythataddressesstatisticalandsystematicerrorsourcesrangesfrom 0.08to+0.08in 0 − theterminal5%oftheMS,whileitispracticallyunconstrainedinthefirst80%oftheMS. 6 Conclusions.Thecalibrationoftheconvectivecoreovershootingwithdouble-linedeclipsingbinaries-intheexploredmassrange 1 and withboth components stillintheir MS phase -appears tobe poorly reliable,at least until further stellarobservables, suchas : v asteroseismicones,andmoreaccuratemodelsareavailable. i X Keywords. Binaries:eclipsing–methods:statistical–stars:evolution–stars:low-mass–stars:interiors r a 1. Introduction in the envelope.We focuson the convective-coreextentduring thecentralhydrogenburningphaseoflow-massstars. Astheresultofthehugeeffortmadeinthepastdecadestorefine In classical modelsthe border of the convectivecore is de- the accuracy and reliability of the stellar evolutionary predic- terminedbymeansoftheSchwarzschildcriterion.However,this tions,stellarevolutiontheoryhasbecomeoneofthemostrobust borderidentifiesthelocuswheretheacceleration,nottheveloc- areas of astrophysical research. However, several mechanisms ity,oftheconvectiveelementvanishes,thusraisingthequestion involvedintheevolutionofstarsarestillpoorlyunderstood. of the extension of the overshootbeyondthe borderitself. The Thelackofaself-consistenttreatmentofconvectioninstel- extensionoftheextra-mixingregionbeyondtheSchwarzschild larevolutionarycodesisoneofthemajorweaknessesaffecting border is usually parametrized in terms of the pressure scale stellarmodels.Thislackpreventsa firmandreliableprediction heightH :l =βH ,whereβisafreeparameter. p ov p ofthe extensionofthe convectiveregions,bothin thecoreand Many efforts to constrain the values of β have been per- formed since the first investigations (among them we recall Sendoffprintrequeststo:G.Valle,[email protected] Saslaw&Schwarzschild1965;Shaviv&Salpeter1973).Anob- Articlenumber,page1of13 A&Aproofs:manuscriptno.ov-language vious way to obtain clues on its value and on the possible 2. Methods dependence on the stellar mass is to compare the theoreti- The value of the β parameter was determined by means of the cal models computedwith differentconvective-coreovershoot- SCEPtERpipeline,amaximum-likelihoodtechniquerelyingon ing efficiencies with proper observations. Several methods for a pre-computedgrid of stellar modelsand on a set of observa- calibration have been explored in the literature. They include tional constraints (see e.g. Valleetal. 2015b). A first applica- the isochrone fitting of stellar cluster colour-magnitude dia- tiontoeclipsingbinarysystemshasbeenextensivelydescribed grams (see e.g. Bertellietal. 1992; PradaMoronietal. 2001; inValleetal.(2015a).Webrieflysummarizethetechniquehere Barminaetal. 2002; Brocatoetal. 2003; VandenBergetal. andfocusonthemodificationsadoptedtoestimateβ. 2006; Bressanetal. 2012) and the comparison with recently We assume and to be two stars in a de- available asteroseismic constraints (e.g. Montalbánetal. 2013; S1 S2 tached binary system. The observed quantities adopted Guentheretal.2014;Tkachenkoetal.2014;Aerts2015). to estimate the core overshooting efficiency are AnasriOeasnfaterhxeeaommftpaelnney,aptdhooespstriebedlleeavscaanancndeiiddoaeftaetlsh,teedsoctoubrbeeldeo-lfvionerersβhecocloaipltiisbnirgnagteioffibni--. {iqnσS1(t,T2heeff,oSb≡1,2s)e,rσve({[dTFeeqff/u,SHa1n,2]S,ti[1t,F2ie)e,s/σ.HF(]MoSr1S,21e,,2aM)c,hSσ1(,p2R,oRSin1S,2t1),2}j}.boenLthteheteuenσsct1ie,m2rtaatiinot=ny ciency was explored in Andersenetal. (1990). By considering grid of stellar models, we define qj ≡ {Teff,j,[Fe/H]j,Mj,Rj}. eightbinarysystems,theyfoundthatnon-standardmodelswere Let 1,2 bethesingle-starlikelihoodfunctionsdefinedas j required for masses higher than 1.5 M . Other investigations, L whichtriedtoexplorethedependenceof⊙βonstellarmass,were 4 1 χ2 pieesrfroearmcheeddbsyomReibwahsaettdaiffl.e(r2e0n0t0c)onanclduCsiloanrse.tT(2h0e0in7v).eTsthigeasteiosntubdy- L1,2j =Yi=1 √2πσ1i,2×exp− 21,2, (1) Claret(2007)indicatesthatthedependenceofβonmassismore where uncertainandlesssteepthanstatedbyRibasetal.(2000),reach- itranyengpcdeiacnSapttlalilannytvcecleaoisffuntiesogifeadttβeiaro≃eln.ds(0e2w.n20eo1fruo5eg)r.phaOetsrovtfaoemrrrammaltleoc,dhraebtlmhoyewaMossβbeisvnveegarlvt&uhaeatiZn(oih2n.aeaMn.l.gd⊙a(.0t2Ma.02.1o)4ries) χ21,2 =Xi=41 qSi1,2σ−i qij2. (2) In the computation of the likelihood functions we consider However, we recall that the β value provided by the fitting only the grid points within 3σ of all the variables from . 1,2 procedure depends on the input physics actually implemented S Moreover, in the estimation process we explicitly assume that in the evolutionary code that is used to compute stellar mod- the stars are coeval1. We also imposethatthe two stars share a els,evenwhentheparametrizationadoptedtodescribetheover- commonvalueofβsincethesamplingisperformedatconstant shootingisthesame.Thus,itwouldbemoremeaningfultocom- valueofovershootingefficiency;inSect.3.2weexploretheef- pare the convective-core extension instead of the β values ob- fect of relaxing this constraint. Then, the joint likelihood ˜ of tainedbydifferentsetsofstellarmodels. L the system is computed as the productof the single star likeli- hoodfunctions.Let ˜ bethemaximumvalueobtainedinthis Moreover, the aforementioned calibrations suffer from at max L step.Thejoint-starsestimatedβisobtainedbyaveragingthecor- least two shortcomings. The first, which makes a direct com- respondingquantitiesofallthemodelswithalikelihoodgreater parisonofthe resultsfromdifferentstudiesdifficult,isthe lack than0.95 ˜ . ofhomogeneityinthetreatmentofthestatisticalerrorsowingto max ×L In the computation we assumed as standard deviations 100 the stellar observational uncertainties. A chief difficulty is that K in T , 0.1 dex in [Fe/H], 1% in mass, and 0.5% in radius. the uncertainty in the derived masses is often neglected in the eff Thecovariancematrixadoptedin the perturbationaccountsfor finalerrorbudget.Thesecondproblemisthelackoftheoretical a correlation of 0.95 between effective temperatures, 0.95 be- investigationsonthepossiblebiasinthevalueofβobtainedby tween metallicities, 0.8 between masses, and 0.0 between radii afitofthesystemswithstellarisochrones. (seeValleetal.2015a,fordetails). Asafirstefforttopartiallyfillthisgap,wehereaddressmany aspects of these questions. By means of Monte Carlo simula- 2.1.Stellarmodelgrid tions,weprovidesomecluesonthereliabilityofconvective-core overshooting calibration for low-mass binary systems, restrict- The grid of models covers the evolution from the zero-age ingthe analysisto themass range[1.1;1.6] M and tothe MS main-sequence (ZAMS) up to the central hydrogen depletion phase. This mass range contains several well-⊙studied systems of stars with mass in the range[1.1;1.6] M and initial metal- (e.g.AQSer,GXGem,BKPeg,BWAqr,V442Cyg,ADBoo, licity [Fe/H] from 0.55 dex to 0.55 dex. T⊙he grid was com- VZHya,V570Per,HD71636)thathavebeenusedinliterature puted by means o−f the FRANEC stellar evolutionary code tocalibratetheβparameter(e.g.Lacyetal.2008;Clausenetal. (Degl’Innocentietal. 2008; Tognellietal. 2011) in the same 2010;Torresetal.2014). configurationaswasadoptedtocomputethePisaStellarEvolu- tionDataBase2forlow-massstars(Dell’Omodarmeetal.2012; WeadopttheSCEPtERpipeline(Valleetal.2014,2015b,a), Dell’Omodarme&Valle 2013). Seventeensets of modelswere modifiedforestimatingthecoreovershootingparameter.Wead- computedwithavaryingcoreovershootingparameterβfrom0.0 dress in a statistical robust way the propagation of the uncer- to0.4(thelastrepresentingapossiblemaximumvalue,seee.g. tainty on the observationalvalues to the fitted β parameterand the results in Claret 2007) with a step of 0.025. The details on explore the possible biases that are due to some unconstrained mechanismsorinputthatinfluencethe evolutioninthe consid- 1 Thisassumptionisjustifiedbecauseinbuildingthesyntheticdatasets eredmassrange:the initialheliumcontentof thestars, andthe weimposedthattheagedifferencebetweenthebinarycomponentsmust efficiency of microscopic diffusion and of the external convec- be 10Myr. tion,parametrizedthroughthemixing-lengthvalueα . 2 h≤ttp://astro.df.unipi.it/stellar-models/ ml Articlenumber,page2of13 Valle,G.etal.:Calibratingconvective-coreovershootingwitheclipsingbinarysystems 5 5 5 0.2 b = 0 0.2 0.2 b = 0.2 0 b = 0.4 0 0 2 2 2 0. 0. 0. )M⊙0.15 )M⊙0.15 )M⊙0.15 ( ( ( cc0 cc0 cc0 M 1 M 1 M 1 0. 0. 0. 5 5 5 0 0 0 0. 0. 0. 0 0 0 0 0 0 0. 0. 0. 0 1 2 3t (Gy4r) 5 6 7 0 1 t (G2yr) 3 0.0 0.5 1t. 0(Gyr)1.5 2.0 Fig.1.Left:extensionoftheconvectivecore(inM ),fromZAMStocentralhydrogenexhaustion,forthreedifferentvaluesoftheovershooting parameterβ=0.0,0.2,and0.4foramodelofM=⊙1.12M atinitial[Fe/H]=0.0.Middle:sameasintheleftpanel,butforM=1.36M .Right: sameasintheleftpanel,butforM=1.60M . ⊙ ⊙ ⊙ thestandardgridofstellarmodels,thesamplingprocedure,and theeffectofadoptingdifferentβreferencevaluesinSect.3.1.We the age estimation technique are fully described in Valleetal. thereforegeneratedasyntheticsampleofN =50000binarysys- (2015b) and Valleetal. (2015a); the adopted input and the re- temsfromthegridofstellarmodelswithβ = 0.2andsubjected lateduncertaintiesarediscussedinValleetal.(2009,2013a,b). all these systems to random perturbationon the observablesto simulatetheeffectofmeasurementerrors.Theovershootingpa- rameterwasthenestimatedfromadoptingthefullgridofstellar 2.1.1. Influenceofβontheextensionoftheconvectivecore modelswithseventeendifferentβvaluesintherange[0.0;0.4]. Before we proceed with analysing the theoretical capability of It is important that that the procedure accounts simultaneously recovering an unknown value of β from a synthetic dataset, it foralltheerrorsin theobservables,so thatitis possibleto ob- is worth showing the effect of the differentchoices of β on the tainarobustestimateofβandofitsuncertainty. extension of the convectivecore for the models adopted in the The results of the simulations are presented in Table 1 and presentwork.Figure1showsforaninitial[Fe/H]=0.0theevo- in Fig. 2. The table reports the median (q ) of the estimated 50 lutionoftheconvectivecoremassversusthe evolutionarytime coreovershootingparameterandthe1σrandomerrorenvelope forstellarmodelsofmasses1.12,1.36,and1.60M ,whichcov- (q and q ) as a function of the mass of the primary star, of 16 84 ers the range we explore here. The extensionof th⊙e convective theprimarystarrelativeager (definedasthe ratiobetweenthe core for the lightest model computed without overshooting is ageofthestar andtheageofthesame star atcentralhydrogen clearly negligible.Moreover,the impact of increasing β on the exhaustion), and of the mass ratio q = M /M . The envelope 2 1 maximum core extension is lower at higher masses. These re- was obtained as in Valleetal. (2015b) by computing the 16th sults, coupled with the fact that more than 95% of the Kepler and84thquantilesoftherelativeerrorsovera movingwindow targets in the KOI catalogue have a mass lower than about 1.6 inmassandrelativeage. M ,arethemainreasonsforthechoiceoftheupperandlower Themainresultisthattheestimatedβvaluesareaffectedby lim⊙itsofthemassrangeexploredhere. largerandomerrors,with a mean envelopehalf-widthof about 0.10. We note a very mild increase of the envelope width as a function of the mass of the primary star; with respect to the 3. Intrinsicaccuracyandprecisionofthe massratioq,wenoteamildshrinkingoftheenvelopeathighq. overshootingcalibration Themostsignificanttrendisduetotheevolutionarystageofthe The first key point to discuss is the intrinsic precision and ac- primary star. While the overshooting parameter is consistently curacyofthecoreovershootingcalibrationprocedure,thatis,in underestimated by about 0.04 when the primary star is in the the ideal case in which the stellar models used in the recovery early part of its MS phase (r ≦ 0.5), in a more advanced MS procedureperfectlymatchthedata.Inotherwords,itisimpor- stage (r & 0.7) we observe a trend similar to that described in tanttoestablishthemagnitudeofboththerandomerrorandthe Valleetal.(2015b)formassestimates.Inthiszonethemorphol- possiblebiasintherecoveredovershootingparameterthatisdue ogyofthegridscomputedwithvariousovershootingefficiencies alone to the observational uncertainties that affect the observ- aremostdifferent,sincetheoverallcontractionstartsindifferent ablesusedto constrainthe overshootingitself. Tothispurpose, regionsof the grids. As a consequence,it is more likely that a we followed a procedure similar to that outlined in Valleetal. model computed with overshooting efficiency β is nearer to a (2015a),asdetailedbelow. modelwithβ˜ < βthantoamodelwithβ˜ > β.Thiseffectleads We determinedthe expectederrorsin the β estimation pro- totheobservedunderestimationofβ.Intheverylastevolution- arystages(r 0.9)thebiasvanishessinceallthestellartracks cessbyMonteCarlosimulations.Inthefollowingweassumea ≥ true value of β = 0.2, regardlessof the mass of the stars. This returntoevolveparallelaftertheoverallcontractionend.Inthis assumption would not affect the validity of the results if there zonetheerrorenvelopehalf-widthshrinksfromameanvalueof 0.15toabout0.06. wereatrendoftheovershootingparameterwiththestellarmass (e.g.Ribasetal.2000;Claret2007)becauseweareinterestedin The apparentlack of bias in the left panel of Fig. 2 should adifferentialeffect,thatis,inthetheoreticaldifferenceexpected be considered with caution. It is due to the adopted sampling betweenthetrueandtherecoveredvaluesofβ.Wealsodiscuss method, which favours systems with primary stars in the later Articlenumber,page3of13 A&Aproofs:manuscriptno.ov-language 4 4 0. 0. 3 3 0. 0. 2 2 b 0. b 0. 1 1 0. 0. 0 0 0. 0. 1.1 1.2 1.3 1.4 1.5 1.6 0.0 0.2 0.4 0.6 0.8 1.0 M (M ) primary relative age 1 ⊙ Fig.2.Left:1σenvelopeofβestimatesthatareduetotheobservationalerrors(solidline)asafunctionofthemassoftheprimarystar.Thedashed linemarksthepositionofthemedian.Right:sameasintheleftpanel,butasafunctionoftherelativeageoftheprimarystar. Table1.Median(q )and1σrandomenvelope(q ,q )oftheestimatedcoreovershootingparameter,asafunctionofthemassoftheprimary 50 16 84 star,ofitsrelativeager,andofthemassratioofthesystemq.Inallthreecases,theenvelopeisobtainedbymarginalizationoveralltheremaining parameters. primarystarmass(M ) 1.1 1.2 1.3 1.4 1.5 1.6 ⊙ q 0.13 0.10 0.10 0.10 0.07 0.07 16 q 0.21 0.20 0.20 0.20 0.20 0.20 50 q 0.30 0.28 0.30 0.30 0.30 0.32 84 primarystarrelativeager 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 q 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.10 0.17 16 q 0.15 0.15 0.16 0.16 0.16 0.17 0.20 0.17 0.12 0.19 0.20 50 q 0.34 0.33 0.31 0.33 0.33 0.35 0.35 0.35 0.33 0.28 0.28 84 massratioq 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0 q 0.07 0.07 0.06 0.06 0.06 0.06 0.10 0.11 16 q 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 50 q 0.35 0.33 0.32 0.31 0.31 0.30 0.30 0.30 84 evolutionarystages,wherethebiasinβisabsent(seeValleetal. 3.1.Effectofchangingtheβreferencevalue 2015a,foradetaileddiscussionontheadoptedsampling).Adif- ferentsamplingwouldshowthebiasespresentatlowr. Inthissectionwebrieflypresentsomeresultsobtainedbyadopt- ingdifferentβreferencevaluesanddiscussthedifferenceswith In summary, even in this ideal case of a perfect agreement respecttothestandardscenarioofβ=0.2.Figure3–analogous between the stellar tracks adopted for the recovery procedure to the right panels of Fig. 2 – shows the resulting error enve- and the artificial stars, which are sampled from the same grid lopeobtainedbyassumingβ=0.0,0.1,0.3,and0.4asreference ofmodels,the estimatedvalueofβis generallybiasedtowards values.Thedifferencesbetweenthepanelareapparent. lowervaluesandshowsalargeuncertainty. Inthecaseofsamplingfromthegridwithβ=0.0,nounder- estimationcan occur;thereforethe resultsare influencedbyan Suchaconsiderablerandomerrorunderminesthepossibility edge effect similar to those discussed in other works for mass, ofobtainingareliableestimateofthecoreovershootingparam- radius,andageestimates(Valleetal.2014,2015b,a).Amedian eter from a single binary system in the considered mass range biasofabout0.12wasfounduptor 0.8.Inthelastpartofthe ≈ withstarsintheMSbecausetheprobabilityofcalibratingona evolutionthebiasisofabout0.05.Forcomparisonwealsoplot statisticalfluctuationishigh.Moreover,thepresenceofthebias inthe figuretheenvelopeobtainedby halvingtheuncertainties sheds doubtseven on the statistical calibrationof β that is per- on the observational parameters. In this case the bias is lower formedbycombiningtheresultsobtainedinseveralsystems. andthe envelopeshrinks, butonly for r 0.4. Concerningthe ≥ Articlenumber,page4of13 Valle,G.etal.:Calibratingconvective-coreovershootingwitheclipsingbinarysystems 4 reference β = 0.0 4 reference β = 0.1 0. 0. 3 3 0. 0. β 0.2 β 0.2 1 1 0. 0. 0 0 0. 0. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 primary relative age primary relative age 4 4 0. 0. 3 3 0. 0. β 0.2 β 0.2 1 1 0. 0. 0 reference β = 0.3 0 reference β = 0.4 0. 0. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 primary relative age primary relative age Fig.3.SameasintherightpanelofFig.2,butsamplingfromthegridwithdifferentβvaluesreportedinthelabels.Thegreendot-dashedlines refertothescenarioinwhichthenominalerrorsontheobservablesarehalved. effectofthesingleerrorsources,weverifiedthattheirindividual the 1σ error envelope is wide (from overestimation of +0.1 to halvingcontributesinnearlyequalmannertothefinalresult. underestimationof 0.025). − Thisscenarioisparticularlyinterestingbecauseitshowsthe tendencytoprefermodelswithmoderateovershootingefficiency The cases of reference β = 0.3,0.4are more similar to the even in the fit of binary systems sampled from a grid without standard scenario, showing a strong underestimation (greater overshooting.Theresultingmedianbiasisrelevantsincein the than 0.2 for β = 0.4) in the first part of the evolution, and the recentliterature,asdiscussedinSect.1,thereisageneralfeeling characteristicunderestimationaroundr = 0.8.Inbothcasesthe thatβ 0.2isadequatetodescribetheobservations. latterunderestimationispartiallysuppressedwhentheerrorson ≤ The presence of a distortion in the estimates of the theobservablesarehalved. convective-coreovershootingparametersshedssomedoubtson theprecisionoftheestimatesatlowβ,inparticularforβ 0.1. Inconclusion,whiletheexpectedbiasdependsontheactual ≤ Thecaseofreferenceβ=0.1providesalowerbiasesthanall valueoftheovershootingefficiencyinthereferenceset,thereis otherscenariosintheestimatedovershootingefficiency;thetrue clear evidence that all the scenarios show a large variability in value is overestimated by about 0.05 up to r 0.8. However, theβestimatesat1σlevel.Furthermore,thebiastowardhigher ≈ theestimateisaffectedbynon-negligiblerandomerrors;evenin valuesofβthatwefoundwhensamplingfromβ=0.0suggests the last partof the evolution– where the precisionis highest– greatcareintheevaluationoffittedβ.0.1. Articlenumber,page5of13 A&Aproofs:manuscriptno.ov-language 3.2.Effectofrelaxingtheassumptionofacommonβforboth systems because the convectiveenvelopevanishesand because stars thetimescaleevolvesveryfast,thefirstisunavoidableinevery massrange. In the previous analyses we assumed that the two stellar com- Toquantifythebiasesduetotheconsideredfactors,wefol- ponentsshareacommonvalueofβ.Sinceithasbeenproposed lowed the same procedure as described in Valleetal. (2015a). in the literature that a possible trend of β with the stellar mass We built several synthetic datasets of artificial binary systems exists(Ribasetal.2000;Claret2007),weverifyinthissection samplingfromgridscomputedwithβ=0.2,butvaryingtheini- thatnobiasesmarourresultsthatarecausedby theestimation tial helium content, the mixing-length value, or neglecting mi- procedureassumptions. croscopic diffusion. These systems were subjected to random Tothispurposewerepeatedtheestimationoftheovershoot- perturbationto simulate the observationalerrors, following the ingparameterforN =10000binarysystems,sampledfromthe sameprocedureasoutlinedinSect.3.Finally,weestimatedthe grid of β = 0.2, without imposing the constraint that the solu- overshootingparameterbyadoptingthestandardmulti-grid. tionsfortheprimaryandthesecondarystarsshareacommonβ value.Inotherwords,onlythecoevalitywasimposedduringthe recovery.Thisprocedurewouldshowpossiblesystematicdistor- 4.1.Initialheliumabundance tionsintheestimatedovershootingparameterforthetwostarsin The evolution of stars strongly depends on the initial helium thesystems.Alackofbiaswouldsupporttheconclusionthatthe abundance.Asaconsequence,foragivenmassandage,theob- individualβisrecoveredwellbyourtechnique. servablestellarquantitiesdependonitsvalue.Ontheotherhand, The results of the analysis are displayed in Fig. 4. The left thestarsweexamineherearetoocoldtoallowaspectroscopic panelofthefigureshowstheprobabilitydensityfunction(eval- measurement of the surface helium content. Moreover, such a uatedbymeansofakerneldensityestimator,seee.g.Scott1992; value would not be representative of the initial value owing to Venables&Ripley2002andAppendixAinValleetal.2014)of theeffectofmicroscopicdiffusion. the recovered β values for the whole systems – that is, impos- This means that stellar modellers have to assume an ini- ingthatthe twostarssharea commonvalue,asintheprevious tial value Y for the helium abundance to adopt in stellar evo- sections–andindividuallyforprimaryandsecondarystars.Itis lution computations. A linear relationship between the primor- apparentthattherecoveredvaluesarealwaysconsistentinme- dialhelium abundanceY and metallicity Z is usually assumed. dianwiththetruevalueβ = 0.2andthatthedistributionsofthe Unfortunately,the value of the helium-to-metalenrichmentra- individualestimatesarewiderthanthecommonone,especially tio ∆Y/∆Z is still quite uncertain (e.g. Pagel&Portinari 1998; forthesecondarystars,whicharesampledinearlierstagesofthe Jimenezetal. 2003; Gennaroetal. 2010). This in turn leads to their evolution.The rightpanel of Fig. 4 shows the probability anuncertaintyintheinitialheliumabundanceadoptedinstellar density functionof the β differencesbetween primary and sec- computationsforagiveninitialmetallicity,whichaffectsstellar ondarystarsfor the N binarysystems. Thefunctionis strongly modelpredictionsand,consequently,thevalueoftheestimated peakedatzerodifference,withthe16thand84thquantile 0.12 ∓ βparameter. respectively. To assess the biasthatis dueto the uncertaininitialhelium These results are reassuring for the capability of the tech- content,wecomputedtwoadditionalgridsofstellarmodelswith niqueofrecoveringthecorrectvalueoftheovershootingparam- β = 0.2, the same metallicity values Z as in the standard grid, eterforthetwostars,withoutsufferingfromdistortionsthatare butbychangingthehelium-to-metalenrichmentratio∆Y/∆Z to duetothedifferentmassesandevolutionarystagesfromthepri- values 1 and 3. Then, we built two synthetic datasets, each of maryandsecondarystar. N = 50000 artificial binary systems by sampling the objects In the light of these results, it is safe to conclude that the from these two non-standard grids, and subjected the observ- individualβforthetwostarscanbeestimatedwithoutsignificant ablesoftheobtainedsystemstorandomperturbations.Asalast biaswithrespecttothescenarioofconstrainedcommonvalue,at step, the core overshooting efficiency was reconstructed using theexpenseofanextralossofprecisionontheindividualvalues. thestandardmulti-gridwith∆Y/∆Z =2. However,sincenodefinitivetrendofβwiththestellarmass The resulting error envelopes are presented in Fig. 5 as a isfirmlyestablished,weprefertoadoptinthesamplingscheme functionoftherelativeageoftheprimarystar.Themedianesti- that we followed to produce the synthetic dataset a common β matedβinthelow-heliumscenariotendstodecreasewithr up value for both components and impose the same constraint in to r 0.7,while the oppositetrendappearsfor the highinitial the recoveryphaseas well.Inturn,thischoicetranslatesintoa ≃ heliumcase.Wealsonoteashiftintheestimatedβforstarsnear conservative evaluation of the uncertainties in the estimated β totheZAMS,positiveforthe∆Y/∆Z =1case,andnegativefor values. ∆Y/∆Z =3.Thetrendsvisibleinthefigureareobviouslycaused by the differential effects on the stellar evolution timescale of 4. Stellarmodelsinducedbiasesinthecalibration changingthe initialhelium contentandof assuming a different overshootingefficiencyβ.Thegreatdifferencebetweenthetwo procedure panelsofFig.5posesaseriousproblemwhenevertheβvalueis In addition to the randomfluctuation discussed in the previous attemptedtobeconstrainedbecausetheoriginalheliumcontent section,theestimatedβvalueispronetosystematicbiasesthat ofasystemisgenerallypoorlyconstrained. are due to stellar models adopted in the calibration procedure. The final uncertainty on β for a change of 1 in ∆Y/∆Z is ± Several inputs or assumptions are routinely adopted in stellar presentedinFig.6andTables2and3.Thefigureandtablesshow evolutionarycodes,whicharestillpoorlyconstrainedbyobser- thepositionofthemedianandofthe1σand2σerrorboundaries vations. In this section we focus on three bias sources that are ontheβestimates,accountingforthechoseninitialheliumvari- relevantinthemassrangeconsideredinthispaper:theinitialhe- ability. They were constructed by computing for each relative liumcontent,themixing-lengthvalue,andtheefficiencyof the ager themaximumandminimumvaluesassumedbytheenve- elementdiffusionusedtocomputestellarmodels.Whilethein- lope boundariesand by the median in all the considered initial fluenceofthelasttwoisexpectedtodisappearformoremassive helium scenarios. As an example, the ql (qu ) value was ob- 50 50 Articlenumber,page6of13 Valle,G.etal.:Calibratingconvective-coreovershootingwitheclipsingbinarysystems 7 common 7 primaries 6 secondaries 6 5 5 y y t t4 i i s s n4 n e e d d3 3 2 2 1 1 0 0.0 0.1 0.2 0.3 0.4 −0.4 −0.2 0.0 0.2 0.4 b difference of b Fig.4.Left:probabilitydensityfunctionsfortheestimatedβfromN=10000systemssampledattrueβ=0.2.Theblacksolidlinecorresponds totheestimationperformedassumingacommonvalueofβforprimaryandsecondarystar;thereddashedlinecorrespondstotheβvaluesforthe primarystaralone;thegreeddot-dashedlinetoβvaluesforthesecondarystaralone.Right:probabilitydensityfunctionforthedifferencesofthe estimatedβforprimaryandsecondarystars. 4 4 0. 0. 3 3 0. 0. 2 2 b 0. b 0. 1 1 0. 0. 0 0 0. 0. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 primary relative age primary relative age Fig.5.Left:asintherightpanelofFig.2,butsamplingfromagridwith∆Y/∆Z = 1.Right:sameasintheleftpanel,butsamplingfromagrid with∆Y/∆Z=3.Inbothcasesthereconstructionwasperformedwiththestandardgridwith∆Y/∆Z=2. tainedbyconsideringtheminimum(maximum)valueatagiven 4.2.Mixing-lengthvalue mass(Table2)orr(Table3)ofthemedianβobtainedsampling from∆Y/∆Z =1,2,3grids. One of the weakest point in stellar model computations is the treatmentoftheconvectivetransportinsuperadiabaticregimes, whichactuallypreventsafirmpredictionoftheeffectivetemper- atureandradiusofstarswithanouterconvectiveenvelope. Wenoteamildincreaseoftheuncertaintywiththemassof Stellar evolutionary codes usually implement the mixing- the primary star M ; the trend with r is clearly more problem- lengthformalism(Böhm-Vitense1958),wheretheefficiencyof 1 atic and suggeststhatforrelativeagesr 0.8the effectof the theconvectivetransportdependsonafreeparameterα thatis ml ≤ unknowninitialheliumcontentevenpreventsthe possibilityof routinelycalibratedontheSun,aprocedurethatinourstandard determiningthe sign of the bias. For the very last evolutionary caseprovidesα =1.74.Nevertheless,thereareseveraldoubts ml phases the 1σ random error on β ranges from 0.05 to +0.10, that the solar-calibrated α value is also suitable for stars of ml − while at the 2σ level the value of β is almost unconstrainedin differentmassesand/orindifferentevolutionarystages(seee.g. thewholeexploredrangeofovershootingefficiency. Ludwigetal.1999;Trampedachetal.2014). Articlenumber,page7of13 A&Aproofs:manuscriptno.ov-language median 1 s 2 s 4 4 0. 0. 3 3 0. 0. 2 2 b 0. b 0. 1 1 0. 0. 0 0 0. 0. 1.1 1.2 1.3 1.4 1.5 1.6 0.0 0.2 0.4 0.6 0.8 1.0 M (M ) primary relative age 1 ⊙ Fig.6.Left:overalluncertainty(statisticalandsystematic)thatisduetotheconsideredvariationsin∆Y/∆Z,independenceonthemassofthe primarystar.Thelighterregionshowstheuncertaintyonthemedianoftheestimatedβcausedbyignoringthecorrectinitialheliumvalue.The intermediatecolourregionsshowtheoverallerrorupto1σthatisduetothecumulatedcontributionofobservationalerrorsandsystematicbiasas aresultoftheunknowninitialheliumvalue.Thedarkerregionscorrespondtocumulatederrorsupto2σ.Right:sameasintheleftpanel,butin dependenceontherelativeageoftheprimarystar. Table3.SameasTable2,butasafunctionoftherelativeageoftheprimarystar. primarystarrelativeage 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 unknowninitialheliumcontent q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.025 q 0.03 0.03 0.05 0.03 0.03 0.03 0.01 0.00 0.00 0.07 0.15 0.16 ql 0.08 0.11 0.16 0.16 0.14 0.12 0.09 0.07 0.07 0.16 0.20 50 qu 0.28 0.26 0.23 0.20 0.25 0.28 0.30 0.27 0.12 0.20 0.23 50 q 0.38 0.38 0.38 0.35 0.38 0.38 0.38 0.38 0.35 0.30 0.30 0.84 q 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.38 0.975 unknownmixing-length q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.025 q 0.01 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.07 0.11 0.16 ql 0.12 0.12 0.14 0.13 0.12 0.17 0.19 0.15 0.12 0.15 0.17 50 qu 0.15 0.17 0.19 0.19 0.20 0.23 0.20 0.17 0.14 0.23 0.27 50 q 0.35 0.35 0.35 0.34 0.35 0.36 0.35 0.35 0.34 0.30 0.35 0.84 q 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.975 unknownelementdiffusionefficiency q 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.025 q 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.05 0.12 0.16 ql 0.13 0.13 0.15 0.16 0.16 0.17 0.20 0.17 0.12 0.17 0.17 50 qu 0.15 0.15 0.16 0.17 0.19 0.23 0.28 0.26 0.20 0.19 0.20 50 q 0.34 0.33 0.31 0.33 0.35 0.36 0.38 0.38 0.36 0.31 0.28 0.84 q 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.38 0.975 To establish the impact of assuming different values of su- jectedtheobservablestorandomperturbations.Finally,theover- peradiabaticconvectiveefficiency,we computedtwo additional shootingefficiencywas reconstructedusingthe standardmulti- grids of stellar models with β = 0.2, but with α = 1.50 and gridwithα =1.74. ml ml α = 1.98. As in the previous section, we built two synthetic ml Theassumedscenarioisappropriateforsystemswithq 1; datasets, each of N = 50000artificialbinarysystems, by sam- ≈ thesestarsareexpectedtoshareacommonvalue–whateveritis plingtheobjectsfromthesetwonon-standardgrids,andwesub- –ofmixing-length.Thehypothesisismorequestionableforsys- Articlenumber,page8of13 Valle,G.etal.:Calibratingconvective-coreovershootingwitheclipsingbinarysystems Table2.Overalluncertainty,statistical(1σand2σ)andsystematic(ql , 4.3.Heliumandheavyelementdiffusion 50 qu )asaresultoftheconsideredvariationsin∆Y/∆Z,α ,andmicro- 50 ml scopicdiffusionefficiencyasafunctionofthemassoftheprimarystar. Anothertrickyprocesstoimplementinstellarevolutioncodesis the diffusion of helium and heavy elements. Depending on the primarystarmass(M ) 1.1 1.2 1.3 1.4⊙ 1.5 1.6 efficiency of microscopic diffusion, the surface abundances of the chemical elements change with time. As an example, dur- unknowninitialheliumcontent ingthecentralhydrogenburning,thesurface[Fe/H]dropsfrom q 0.01 0.00 0.00 0.00 0.00 0.00 0.025 the ZAMS value and reaches a minimum at about 90% of its q 0.12 0.07 0.07 0.07 0.05 0.03 0.16 evolutionbeforecentralhydrogendepletion(seee.g.Fig.12in ql 0.21 0.20 0.20 0.20 0.20 0.17 50 Valleetal.2014).Afterthispointtheconvectiveenvelopesinks qu 0.23 0.22 0.21 0.23 0.23 0.23 50 inwardsinmoreinternalregions,wheremetalswerepreviously q 0.32 0.30 0.30 0.33 0.34 0.35 0.84 accumulatedby gravitationalsettling, leading to an increase of q 0.39 0.38 0.39 0.40 0.40 0.40 0.975 thesurfacemetallicity.Thesizeoftheeffectdependsonboththe unknownmixing-length mass of the star and its initial metallicity. The lower the initial q 0.01 0.00 0.00 0.00 0.00 0.00 0.025 metallicity and the thinner the convective envelope, the higher q 0.09 0.07 0.07 0.07 0.07 0.07 0.16 thesurfacemetallicitydrop. ql 0.17 0.16 0.17 0.17 0.18 0.20 50 qu 0.30 0.28 0.25 0.23 0.23 0.20 IntheconsideredmassrangeofMSstarstheobserved[Fe/H] 50 q0.84 0.38 0.36 0.35 0.33 0.33 0.33 mightthereforebequitedifferentfromtheinitialone–ifinhibit- q0.975 0.40 0.40 0.40 0.40 0.40 0.40 ing processesare inefficient– dependingon the stellar age and unknownelementdiffusionefficiency mass. Hence the microscopic diffusion effect should be taken q 0.01 0.00 0.00 0.00 0.00 0.00 intoaccountwheneverthestructuralcharacteristicsoflow-mass 0.025 q 0.10 0.05 0.05 0.07 0.07 0.07 MS stars have to be determined.Neglectingmicroscopicdiffu- 0.16 ql 0.17 0.17 0.17 0.17 0.18 0.20 sion in the stellar models used in the recovery procedure and 50 qu 0.21 0.20 0.20 0.20 0.20 0.20 assumingthattheobserved[Fe/H]is coincidentwith theinitial 50 q 0.30 0.28 0.30 0.30 0.32 0.33 onewillintroduceasystematicbias. 0.84 q 0.38 0.38 0.38 0.40 0.40 0.40 0.975 However, the efficiency of diffusion has been questioned bysome authors(see e.g.Kornetal. 2007; Grattonetal. 2011; Nordlanderetal. 2012; Gruytersetal. 2014). Moreover, some temswithsignificantlydifferentmasses,sinceapossibletrendof widelyusedstellar modelgridsin theliterature,namelyBaSTI (Pietrinfernietal. 2004, 2006) and STEV (Bertellietal. 2008, α withthestellarmassisstilluncertain(Trampedach&Stein ml 2009), do not implement diffusion. The same occurs in stel- 2011;Bonacaetal.2012;Mathuretal.2012;Tanneretal.2014; lar models used in some grid-based techniques, such as RA- Magicetal. 2015). Therefore the results presented here can be DIUS (Stelloetal. 2009) and SEEK, which both adopt a grid consideredastheextremevariationontheβcalibrationfordif- of models computed with the Aarhus STellar Evolution Code ferencesinthemixing-lengthparameterof 0.24. ± (Christensen-Dalsgaard2008). The error envelopesas a function of the relative age of the primary star are shown in Fig. 7. The trends caused by assum- Thus,itisworthwhiletoanalysethedistortionintheinferred ing differentmixing-lengthvalues are slightly different; lower- value of the convective-coreovershootingefficiency that arises ingα hastheeffectofunderestimatingtheβvalueforr 0.7, whenevertheeffectsofthediffusionareneglectedinstellarmod- ml whileforr 0.9theovershootingefficiencyisoverestimat≤ed.In els. The maximumbias caused by the elementdiffusionuncer- contrast,an≥highervalueofα leadstoaβunderestimateinthe taintyontheestimatedβvaluewasassessedbycomputingagrid ml lastpartoftheMSevolution. ofmodelswithβ = 0.2andnoelementdiffusion.Asinthepre- vioussection,asyntheticdatasetof N = 50000binarysystems Thefinaluncertaintyonβthatisduetotheignoranceofα ml was sampled from this grid and subjected to random perturba- is presentedinFig. 8 andTables2 and3.As expected(seeleft tions.Theβvalueswerethenestimatedbyadoptingthestandard panelin Fig. 8), the bias caused by the exploreduncertaintyin multi-overshootinggrid. the mixing-lengthvalue vanishesformassive systems. In these casestheprimarystarsdonotpresentaconvectiveenvelope. TheresultsarepresentedinFig.9;thefigureshowsthe1σβ envelope as a function of the relative age of the primary star. Finally(rightpanelinFig.8),amoderatebiasofabout 0.05 ± Overall, the diffusion-induced bias is the lowest of those ex- in the last stages of the evolution is apparent, an unfortunate ploredinthepaper.Thelargestdifferencefromthestandardsce- event,since this zonehas been foundin the precedingsections nariooccursforsystemswhoseprimarystarhasarelativeagein toofferthebestopportunityfortheβestimate. therange0.5<r<0.8.Intheterminalphaseoftheevolution,a Toexploreingreaterdetailthebiasthatisduetothelackof smallunderestimationof0.025occurs.Thefinaluncertaintyon informationaboutthe correctmixing-lengthvalueto adopt,we βthat is dueto the lack of knowledgeofdiffusionefficiencyis present in Table 4 the cumulated envelopeobtained by consid- presentedinFig.10andTables2and3.Asforthemixing-length eringonlysystemswithasecondarystarmoremassivethan1.4 variability, we present in Table 4 the detail about the expected M and than 1.5 M . These stars have a progressively thinner bias and random uncertainty in the subsets of masses obtained co⊙nvective envelope⊙, and therefore they are increasingly more byrestrictingtosystemswithsecondarystarmoremassivethan independentof the efficiency of the superadiabatic convection. 1.4 M and than 1.5 M . As a result of two competing effects Asexpected,inthesesubsetsofmassesthewidthofthebiasin- (i.e.th⊙e thinningofthe⊙convectiveenvelopeandthe faster evo- tervalinβ,forr=1.0shrinksfrom0.10inthestandardscenario lutionarytimescale),weobtainedthatthedifferencesamongall to0.05and0.03,respectively. thesescenariosarealmostnegligible. Articlenumber,page9of13 A&Aproofs:manuscriptno.ov-language 4 4 0. 0. 3 3 0. 0. 2 2 b 0. b 0. 1 1 0. 0. 0 0 0. 0. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 primary relative age primary relative age Fig.7.Left:asintherightpanelofFig.2,butsamplingfromagridwithα =1.50.Right:sameasintheleftpanel,butsamplingfromagridwith ml α =1.98.Inbothcasesthereconstructionwasperformedwiththestandardgridwithα =1.74. ml ml median 1 s 2 s 4 4 0. 0. 3 3 0. 0. 2 2 b 0. b 0. 1 1 0. 0. 0 0 0. 0. 1.1 1.2 1.3 1.4 1.5 1.6 0.0 0.2 0.4 0.6 0.8 1.0 M (M ) primary relative age 1 ⊙ Fig.8.Left:overalluncertainty(statisticalandsystematic)thatisduetotheconsideredvariationsinα ,independenceonthemassoftheprimary ml star.Thelighterregionshowstheuncertaintyonthemedianoftheestimatedβthatisaresultofignoringthecorrectmixing-lengthvalue.The intermediatecolourregionsshowtheoverallerrorupto1σcausedbythecumulatedcontributionofobservationalerrorsandsystematicbiasthat isduetotheunknownmixing-lengthvalue.Thedarkerregionscorrespondtoerrorsupto2σ.Right:sameasintheleftpanel,butindependence ontherelativeageoftheprimarystar. 5. Conclusions themass,andtheradiusofthetwostars.Thegridofstellarmod- elswascomputedfortheevolutionaryphasesfromtheZAMSto We theoretically investigated the statistical and systematic er- thecentralhydrogendepletioninthemassrange[1.1;1.6] M , rors in the calibration of the convective-coreovershootingeffi- with 17 different values of the core overshooting parameter⊙β ciencyonlow-massbinarysystemswhosetwo componentsare from0.0to0.4. in the MS phase. We used the grid-based pipeline SCEPtER (Valleetal. 2014, 2015b,a) and adopted as observational con- Thestatisticaluncertaintythataffectstheβvalueprovidedby straints the stellar effective temperature,the metallicity [Fe/H], thecalibrationprocedurearisingfromtheobservationalerrorsis Articlenumber,page10of13