ebook img

Calculus with Applications PDF

509 Pages·2013·6.782 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus with Applications

Undergraduate Texts in Mathematics Peter D. Lax Maria Shea Terrell Calculus With Applications Second Edition Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics SeriesEditors: SheldonAxler SanFranciscoStateUniversity,SanFrancisco,CA,USA KennethRibet UniversityofCalifornia,Berkeley,CA,USA AdvisoryBoard: ColinAdams,WilliamsCollege,Williamstown,MA,USA AlejandroAdem,UniversityofBritishColumbia,Vancouver,BC,Canada RuthCharney,BrandeisUniversity,Waltham,MA,USA IreneM.Gamba,TheUniversityofTexasatAustin,Austin,TX,USA RogerE.Howe,YaleUniversity,NewHaven,CT,USA DavidJerison,MassachusettsInstituteofTechnology,Cambridge,MA,USA JeffreyC.Lagarias,UniversityofMichigan,AnnArbor,MI,USA JillPipher,BrownUniversity,Providence,RI,USA FadilSantosa,UniversityofMinnesota,Minneapolis,MN,USA AmieWilkinson,UniversityofChicago,Chicago,IL,USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches.Thebooksincludemotivationthatguidesthereadertoanappreciation ofinterrelationsamongdifferentaspectsofthesubject.Theyfeatureexamplesthat illustratekeyconceptsaswellasexercisesthatstrengthenunderstanding. Forfurthervolumes: http://www.springer.com/series/666 Peter D. Lax Maria Shea Terrell (cid:129) Calculus With Applications Second Edition 123 PeterD.Lax MariaSheaTerrell CourantInstituteofMathematicalSciences DepartmentofMathematics NewYorkUniversity CornellUniversity NewYork,NY,USA Ithaca,NY,USA ISSN0172-6056 ISBN978-1-4614-7945-1 ISBN978-1-4614-7946-8(eBook) DOI10.1007/978-1-4614-7946-8 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013946572 MathematicsSubjectClassification:00-01 ©SpringerScience+BusinessMediaNewYork1976, 2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Ourpurposein writinga calculustexthasbeentohelpstudentslearnatfirsthand thatmathematicsis thelanguagein whichscientific ideascan bepreciselyformu- lated,thatscienceis a sourceofmathematicalideasthatprofoundlyshapethe de- velopment of mathematics, and that mathematics can furnish brilliant answers to importantscientificproblems.ThisbookisathoroughrevisionofthetextCalculus withApplicationsandComputingbyLax,Burstein,andLax.Theoriginaltextwas predicatedonanumberofinnovativeideas,anditincludedsomenewandnontradi- tionalmaterial.Thisrevisioniswritteninthesamespirit.Itisfairtoaskwhatnew subjectmatterornewideascouldpossiblybeintroducedintosooldatopicascalcu- lus.Theansweristhatscienceandmathematicsaregrowingbyleapsandboundson theresearchfrontier,sowhatweteachinhighschool,college,andgraduateschool must not be allowed to fall too far behind. As mathematiciansand educators, our goalmustbetosimplifytheteachingofoldtopicstomakeroomfornewones. To achieve that goal, we present the language of mathematics as natural and comprehensible,alanguagestudentscanlearntouse.Throughoutthetextweoffer proofsofalltheimportanttheoremstohelpstudentsunderstandtheirmeaning;our aimistofosterunderstanding,not“rigor.”Wehavegreatlyincreasedthenumberof workedexamplesandhomeworkproblems.Wehavemadesomesignificantchanges in the organizationofthe material;the familiar transcendentalfunctionsare intro- duced before the derivative and the integral. The word “computing” was dropped from the title because today, in contrast to 1976, it is generally agreed that com- putingisanintegralpartofcalculusandthatitposesinterestingchallenges.These are illustrated in this text in Sects.4.4, 5.3, and 10.4, and by all of Chap.8. But themathematicsthatenablesustodiscussissuesthatariseincomputingwhenwe roundoffinputsorapproximateafunctionbyasequenceoffunctions,i.e.,uniform continuityanduniformconvergence,remains.Wehaveworkedhardinthisrevision toshowthatuniformconvergenceandcontinuityaremorenaturalandusefulthan pointwiseconvergenceandcontinuity.Theinitialfeedbackfromstudentswhohave usedthetextisthatthey“getit.” Thistextisintendedforatwo-semestercourseinthecalculusofasinglevariable. Onlyknowledgeofhigh-schoolprecalculusisexpected. v vi Preface Chapter 1 discusses numbers,approximatingnumbers,and limits of sequences ofnumbers.Chapter2 presentsthebasic factsaboutcontinuousfunctionsandde- scribestheclassicalfunctions:polynomials,trigonometricfunctions,exponentials, and logarithms.It introduceslimits of sequencesof functions,in particularpower series. In Chapter3, the derivative is defined and the basic rules of differentiationare presented.Thederivativesofpolynomials,theexponentialfunction,thelogarithm, andtrigonometricfunctionsarecalculated.Chapter4describesthebasictheoryof differentiation,higherderivatives,TaylorpolynomialsandTaylor’stheorem,andap- proximatingderivativesbydifferencequotients.Chapter5describeshowthederiva- tiveentersthelawsofscience,mainlyphysics,andhowcalculusisusedtodeduce consequencesoftheselaws. Chapter 6 introduces,throughexamplesof distance,mass, and area,the notion oftheintegral,andtheapproximateintegralsleadingtoitsdefinition.Therelation betweendifferentiationandintegrationisprovedandillustrated.InChapter7,inte- grationbypartsandchangeofvariableinintegralsarepresented,andtheintegralof theuniformlimitofasequenceoffunctionsisshowntobethelimitoftheintegrals of the sequence of functions. Chapter 8 is about the approximation of integrals; Simpson’s rule is derived and compared with other numerical approximations of integrals. Chapter 9 shows how many of the concepts of calculus can be extended to complex-valuedfunctions of a real variable. It also introduces the exponential of complexnumbers.Chapter10appliescalculustothedifferentialequationsgovern- ingvibratingstrings,changingpopulations,andchemicalreactions.Italsoincludes averybriefintroductiontoEuler’smethod.Chapter11isaboutthetheoryofprob- ability,formulatedinthelanguageofcalculus. ThematerialinthisbookhasbeenusedsuccessfullyatCornellinaone-semester calculus II course for students interested in majoring in mathematics or science. The students typically have credit for one semester of calculus from high school. Chapters 1, 2, and 4 have been used to present sequences and series of numbers, power series, Taylor polynomials, and Taylor’s theorem. Chapters 6–8 have been usedtopresentthedefiniteintegral,applicationofintegrationtovolumesandaccu- mulationproblems,methodsof integration,and approximationof integrals. There hasbeenadequatetimeleftinthetermthentopresentChapter9,oncomplexnum- bersandfunctions,andtoseehowcomplexfunctionsandcalculusareusedtomodel vibrationsinthefirstsectionofChapter10. Wearegratefultothemanycolleaguesandstudentsinthemathematicalcommu- nitywhohavesupportedoureffortstowritethisbook.Thefirsteditionofthisbook was written in collaborationwith SamuelBurstein. We thank him for allowing us todrawonhiswork.WewishtothankJohnGuckenheimerforhisencouragement andadviceonthisproject.We thankMattGuay,JohnMeluso,andWyattDeviau, who while they were undergraduatesat Cornell, carefully read early drafts of the manuscript,and whose perceptivecommentshelped us keep our studentaudience inmind.WealsowishtothankPatriciaMcGrath,ateacheratMaloneyHighSchool in Meriden, Connecticut, for her thoughtful review and suggestions, and Thomas Preface vii KernandChenxiWu,graduatestudentsatCornellwhoassistedinteachingcalcu- lus II with earlier drafts of the text, for their help in writing solutions to some of thehomeworkproblems.ManythanksgotothestudentsatCornellwhousedearly draftsofthisbookinfall2011and2012.Thankyouallforinspiringustoworkon thisproject,andtomakeitbetter. This current edition would have been impossible without the support of Bob Terrell,Maria’shusbandandlong-timemathematicsteacheratCornell.FromTEX- ingthemanuscripttomakingthefigures,tosuggestingchangesandimprovements, ateverystepalongthewayweoweBobmorethanwecansay. PeterLaxthankshiscolleaguesattheCourantInstitute,withwhomhehasdis- cussedover50yearsthechallengeofteachingcalculus. NewYork,NY PeterLax Ithaca,NY MariaTerrell Contents 1 NumbersandLimits............................................ 1 1.1 Inequalities................................................ 1 1.1a RulesforInequalities................................. 3 1.1b TheTriangleInequality ............................... 4 1.1c TheArithmetic–GeometricMeanInequality.............. 5 1.2 NumbersandtheLeastUpperBoundTheorem.................. 11 1.2a NumbersasInfiniteDecimals.......................... 11 1.2b TheLeastUpperBoundTheorem ...................... 13 1.2c Rounding........................................... 16 1.3 SequencesandTheirLimi√ts.................................. 19 1.3a Approximationof 2 ................................ 23 1.3b SequencesandSeries................................. 24 1.3c NestedIntervals ..................................... 36 1.3d CauchySequences ................................... 37 1.4 TheNumbere ............................................. 44 2 FunctionsandContinuity ....................................... 51 2.1 TheNotionofaFunction .................................... 51 2.1a BoundedFunctions................................... 54 2.1b ArithmeticofFunctions............................... 55 2.2 Continuity ................................................ 59 2.2a ContinuityataPointUsingLimits...................... 61 2.2b ContinuityonanInterval.............................. 64 2.2c ExtremeandIntermediateValueTheorems............... 66 2.3 CompositionandInversesofFunctions ........................ 71 2.3a Composition ........................................ 71 2.3b InverseFunctions .................................... 74 2.4 SineandCosine............................................ 81 2.5 ExponentialFunction ....................................... 86 2.5a RadioactiveDecay ................................... 86 2.5b BacterialGrowth .................................... 87 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.