ebook img

Calculus With Analytic Geometry PDF

1984·98.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus With Analytic Geometry

CALCULUS Trigonometric Identities Fundamental Identities Even-Odd Identities Addition Formulas 1 ^ sin(-0) = -sin 6 fsin(a + P) = sin acos/3(•^n^^osa (?) CSC sin ^ cos(-e) =cos e cos(a+ P) = cos acos/3— sin asin/3 @ sec e cos1 6 1112 tcaont((--00)) == --tcaont 6 1ta-n a+ tan/3 (3) cot = J 13 sec(-0)= sece tan = Subtraction Formulas 14 csc(-0) -esc e ^ tan e sin e 22 sin(a-j8) = sin acos/3- sin/3cosa cos Double-Angle Formulas' 23 cos(a- /3) =cos acos)8+ sinasin^ ®^cocots- e+cssoiinsn-ee= 1 1156 csions2206===221sc-ion2s-6scion-^s 1 24 tan(a - /3) = tana— tan 6 7 1 + tan- = sec- =cos- 6- sin^ Product Formulas 8 1 + cot- Q= csc^ e 17 cos- =^(1 +cos20) 25 sin acos^=5[sin(a + /3) + sin(a- /3)1 18 sin^ =5(1 -cos20) 26 cos acos /3 =|[cos(a +^) +cos(a - /3)) 27 sinasin/3=5[cos (a-/3) - cos (a + ^)] Geometry (see Appendix A, page 1015) Calculus Differentiation 1 D,u" = nu"~^ D^ 11 DvsinhM = cosh uDji Vl -M^ 2 D^u + v) =D^+D^v 12 D;^cosh u = sinh mD^m 3 D,{uv) = mO,v+ vD^M 13 D(tanh « = sech- uD^m 22 D,cos"' M uD^v 14 Dtcoth M = -csch- uD^ 23 D,tan"' m 15 D, sech M = —sech htanh uD^u 1 + M^ 56 DD^,scionsuM==c—ossiunDM,Du,u 1167 DDj^"cs=cheM"=D^—csch wcoth «D^w 24 D, cot"' M : 1 + u^ 7 D,tan u = sec^ mD^m 18 D,a" = a" InaD,m 25 D,sec"' M |m|Vm^ - 1 8 Dj cot M = -csc^ uD,M 9 D^sec M = sec u tanu D^ 19 D, log,,« = u Ina 26 DjCSC"' « u\Vu^ - 1 10 D^CSC u = —CSCMcot«D^M 20 D. in w = 27 D f(t)dt=f(u)D,u J nsw BOOK $51. 45 ijcrn Tables of.Integrals (constantso^n^^gf'"'^l^^^^ '*^'' omitted tosave space) Elementary forms 1 du = n + 1 (n^-l) 10 cotudu= \n |sin u| 19 coshudu = sinh m — 11 secudu = \n |sec m + tan u\ 20 sech" M^M = tanhu = In |m| J u 12 CSC MJm =In |csc M — cotm| 21 csch" udu = -cothm sinMdu = —cos « J 13 sin^ udu = 2U —1sin 2m 22 sech M tanh udu = —sechu cos M<iM = sinu I 14 COS" udu = 2U + 4 sin 2m 23 csch Mcoth udu = —csch u sec"Mc/u = tanu csc^ M^« = —cot u IS rfw , M 24 udv= uv— \ Vdu du 25 e"du = e" 7 sec Mtan udu = sec m 16 a^+ M- 26 a"du = a" 8 CSC Mcotudu = —CSC m du Ina 9 jI tan Mt/w = —In |cos m| 1178 smiVnhm1—"u^d—ua=~1 c~oshau^' IWgonometric Forms 27 tan" udu = ta.nu — u I 2289 J^rcsoint"^uudduu== —costin"M—'"uMcos « 1 n —« \ '{sin"_,- udu 34 rCSC" udu= "-i1 esc" ^HM"/cIo--t2M1 Jrsec„_," MJm 30 Jrcos"Mdu = cos-InM si•n M 1 w —n ,1 JIrcos"_-,~ udu-t ^ . -^ + n -- 2 CSC - Mdu —— n 1 31 J tan"Mdu = —tan""' m - I tan"~^ udu 35 I u"sinudu = -u"cos u + n \ u" cosMc/« 32 J cot"udu = M- 1 cot""' u—J cot""- udu m"cosudu= u"sinm —n «" ' sinmdu ;3a^ Inverse Trigonometric Forms 37 sin"' udu = u sin"' u + Vl — m" 40 fM sin_, udu = lu^- 1 sin m+ mVi - J 4 38 cos"' //rfw = Mcos"' M — Vl —M^ 41 fM cos_, udu = 2u- - 1 cos_, M - J 4 4 39 I tan"' udu = u tan"' u In (1 + u^) 42 \rutan- udu =—1 (m"- + 1) tan-. m —«— Digitized by the Internet Archive 2010 in http://www.archive.org/details/calculuswithanalOOmune SECOND EDITION CALCULUS with Analytic Geometry SECOND EDITION CALCULUS with Analytic Geometry M. A. Muneni Macomb Community College D. J. Foulis University of Massachusetts Worth Publishers, Inc. Calculus with AnalyticGeometry, secondedition Copyright © 1984 by Worth Publishers. Inc. All rights reserved. Printed in the United StatesofAmerica Library ofCongress Catalog No. 83-50583 ISBN: 0-87901-236-6 First printing, January 1984 editor: Anne Vinnicombe production: GeorgeTouloumes and Pat Lawson designer: MalcolmGrearDesigners illustrator: Mel Erikson Art Services typographer: YorkGraphic Services. Inc. printer and binder: Kingsport Press cover: Sinusoidalsurface. Computergraphics byThomas Banchoff. David Laidlaw. and David Margolis. Textfigureandpicturecreditsappearonpage 1033.whichconstitutesacontinuationofthe copyright page. Wortli Publishers, Inc. 444 Park Avenue South New York, New York 10016 11 CONTENTS Preface Introduction CHAPTER 1 FUNCTIONS AND LIMITS 1 1.1 Real Numbers, Inequalities, and Absolute Value 1 1.2 The Cartesian Coordinate System 10 1.3 Straight Lines and Their Slopes 16 1.4 Functions 22 1.5 Types ofFunctions 31 1.6 Trigonometric Functions 41 1.7 Limits ofFunctions 52 1.8 Properties ofLimits ofFunctions 60 1.9 Continuous Functions 69 CHAPTER 2 THE DERIVATIVE 85 2.1 Rates ofChange and Slopes ofTangent Lines 85 2.2 The Derivative ofa Function 92 2.3 Basic Algebraic Rules for Differentiation 98 2.4 Tangent and Normal Lines 109 2.5 Rules for Differentiating Trigonometric Functions 114 2.6 Function Composition 120 2.7 The Chain Rule 124 2.8 Implicit Functions and Implicit Differentiation 132 2.9 The Rational-Power Rule 138 2.10 Higher-Order Derivatives 143 2.1 Algebraic Signs and Zeros ofFunctions 150 CHAPTER 3 APPLICATIONS OF THE DERIVATIVE 165 3. The Mean-ValueTheorem 165 3.2 Monotonicity and the First-Derivative Test 172 1 3.3 Concavity and the Second-Deiivative Test 180 3.4 Absolute Extrema 188 3.5 Asymptotes and Limits Involving Infinity 194 3.6 Graph Sketching 204 3.7 Applied Maximum and Minimum Problems 211 3.8 Related Rates 221 3.9 Applications to Economics and Business 228 (HAPTiiR 4 ANTIDIFFERENTIATION AND DIFFERENTIAL EQUATIONS 243 4.1 Differentials and Linear Approximation 243 4.2 Antiderivatives 251 4.3 The Method ofSubstitution, or Change ofVariable 258 4.4 Differential Equations 264 4.5 Applications ofDifferential Equations 274 4.6 The Harmonic-Oscillator Equation 281 4.7 Areas by the Method of Slicing 290 CHAPTER 5 THE DEFINITE INTEGRAL 299 5.1 The Sigma Notation for Sums 299 5.2 The Definite Integral 307 5.3 Basic Properties ofthe Definite Integral 316 5.4 The Fundamental Theorem ofCalculus 327 — 5.5 Approximation ofDefinite Integrals The Trapezoidal Rule and Simpson's Rule 338 5.6 Areas ofRegions in the Plane 346 CHAPTER 6 APPLICATIONS OF THE DEFINITE INTEGRAL 357 6. Volumes ofSolids ofRevolution 357 6.2 The Method ofCylindrical Shells 365 6.3 Volumes by the Method ofSlicing 369 6.4 Arc Length and Surface Area 375 6.5 Work, Force, and Energy 383 6.6 Applications to Economics and the Life Sciences 393 CHAPTER 7 TRANSCENDENTAL FUNCTIONS 401 7.1 Inverse Functions 401 7.2 Inverse Trigonometric Functions 409 7.3 Derivatives ofand Integrals Yielding Inverse Trigonometric Functions 418 7.4 The Natural Logarithm Function 426 7.5 Properties ofthe Natural Logarithms 431 7.6 The Exponential Function 438 7.7 Exponential and Logarithmic Functions with Base OtherThan e 445 7.8 Hyperbolic Functions 452 7.9 Exponential Growth and Decay 458 7.10 Mathematical Models for Biological Growth 468 7.11 First-Order Linear Differential Equations 474

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.