ebook img

Calculus with analytic geometry PDF

931 Pages·2001·48.94 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus with analytic geometry

CALCULUS WITH ANALYTIC GEOMETRY' Answers to OddDNumbered Exercises SelhTests / Daniel J. Fleming Department of Mathematics St. Lawrence University James J. Kaput Department of Mathematics Southeastern Massachusetts University Harper & Row, Publishers New York Hagerstown Philadelphia San Francisco London Answers to Odd-Numbered Exercises/Self-Tests to accompany Calculus with Analytic Geometry 0 1979 by Daniel J. Fleming and James J. Kaput. ANSWERS TO ODD-NUMBEItED EXERCISES / SELFlTESTS A-2 ANSWERS TO ODD-NUMBERED EXERCISES/SELF-TESTS Chapter 1 See. 1.1 1. [-11/2, -1/2] 3. x = 2 5. [-9,3] 7. (a) x = -3, -2; (b) x = 5 9. (-co, -2), [-1,2/5], and [4, +co) 11. (-00, -1) and (0,5/3) 13. (-3, -fi)an d (fi+,c o) See. 1.2 p5) \;. 1. (u ;)5 1 (6) 9 3. (T-,1lo7) -23 5. (3, 3) 7. (u) -1; ()jb)y = -x + 6 9. the line in 8(c) with slope = 4 + 11.9 - 1 = 4(x - 4) 13. x = 3 1,5. (a)y - 1 = 4(x - 4); (b)y= 4~ - 15; (6) 4~ -J - 15 = 0 17. y = -X 1 + 25. (a)y = x 1; (b) yes; (d)y = x 19- 21- 23. (I/'& 0) ~ ~ (0, -15) (0, -1) + 27. (6) 3y x - 9 = 0 29. (4, 13/2), (6,5), and (8, 7/2) 31. (a) (13, 3), (6) (-9, 13) See. 1.3 1. 3. 5. (a) parabola; (b) axis x = - 4, conc. up, ext. pt. ( - 71 7>-81 ) x = -1/6 7. (a) (x - 2)z + (y + 3)2 = 25; (6) a circle, center at (2, -3), radius 5 9. (a) parabola; (b) axis x = 3/2, ext. pt. (3/2, 15/4) conc. down 11. no graph 13. (u) parabola; (b) opening right, axisy = 1, ext. pt. (0, 1) 15. y=o 2 1. single pt. (0, 0) (-11/6, -169/12) x = -11/6 Review Exercises I.x<3/4 3.21/4>x 5.x>-9 9. -j<x<3 l l . x = - 5 13. -2>xorx>14/5 15.nosolution 1 7 . ( ~ + 2 ) ~ + 4 19- 2(x - $z - 9 21- 2(x - Jfi+) S' 23. 3(x + i)z- 25. (-3, -2) U (0, 1/2) U (3, +w) 3(2c)37 2.. x ((-a--y)W 5,; + ( b-31) 1 =( U-0 (903-,4,7$)).; U(( x6[ )l- ,2 ; + 5()md2) +) 3y (2y-9 - 4.x 6(-)-20 0 =1,0 1=+/9 0 w; 3)(e9 3).y 1+ (.x 4+( a= )2 )a2-a (+. ;((y+6) + 9( 44),)s2 )3 ;= 5( c1.) 6 -( 4a;4) 51x(. d +)c 5 e3xny t+.- (2 -y16 5,- 8= )2 ,07 ;7 = (=b )0 ;12 0x( e-)4yy3 --. S c6 =e =n {t( .x0 (;3 -, - 44)) , ANSWERS TO ODD-NUMBERED EXERCISES/SELF-TESTS A-3 r = 5 45. none of these 47. st. line, slope 3,y int. 2 49. par. opening right, axisy = - 1, ext. pt. (-5, - 1) 5 1. st. line, slope 1, y int. 8 53. par. opening up, axis x = -3, ext. pt. (-$, +y) .55. par. opening up, axis x = 2, ext. pt. at (2, 3) 57. st. line, slope 2, y int. -5 59. vert. st. line through (46.1,O) 61. none of these 63. none of these 65. a circle, cent. at (0, 2), 7 = 2 67. a par., opening right, axisy = -4, ext. pt. is (0, -4) 69. none of these + 3. (a) (2, -2); (b)y - x 4 = 0; (c)y- x = O (-l/Z, -25/4)' I + 4. (x - 6)' (y - 8)' = 100 Chapter 2 See. 2.1 x = -1; (b) all R except m(x) = -2; (c) 7- [-3,O]U[l,+o0) 9. (-00,-2)U(7,+00) 11.afunctionisgiven I 1 x( b#) Z 2-x1T -/2T ;1 +(e )2 2(x2 4+? 1(;6 )( fx)++2 x h +-+ 11 ; (+9) 2x(;x (h+) 4hx)' ;+ ( d3 ) hh2-+1-.ll (+a) 23hx 2-; ( e4) _+33 _-+_x1_1+3 _ 4+ ;2 (.b9) 3~1 -9 .4 (-u) - x3 x+ 3+ 4 1,> ;( 6()b )( 3-xx -- 4 3)1( ;x ( 6+) 24x) 2; +(d x); ( 3(xdx )- -+2 24x4)+ .* 3-1 ,' x # -4; (e) x; (f)x ; (g) 9x - 16; (h) _+_ _ 23. (a) 5x; (b) -x; (c) 6x2;( d) 2/3, x # 0; (e) 6x; (f)6 x; (g) 4x; (h) 9x 9 25. (a) x3 + 3x + 3; (b) x3 + 3x - 1; (c) 2x3 + 6x + 2; (d) x3 + + ; (e) 15; (f)2 ; (9) (x3 + 3x + 1)3 + 3(x3 + 3x + 1) + 1; (h) 2 2 27. f(x) = (g o h)(x), where g(x) = $ and h(x) = 2x + 1 29. f(x) = (g o h)(x), where g(x) = x + 1 and h(x) = 2x A-4 ANSWERS TO ODD-NUMBERED EXERCISES/SELF-TESTS See. 2.2 1. -1/2 3. does not exist 5. 1/(4 6)7. -6 9. -& 11. 96 13. the answers are the same 15. r-l-izm+ ~ x +1 2 -- +m, m-l-iz-m -x -+1 2 - -f fi 17. -l-iIr1n2 ~ 12x 1+ 11 -- + ffi 19. (a) Il-i1r-n S(X) = 0; (b) zl-i1m+ ~(x=) 1; (c) no See. 2.3 1. (a) 1944 ft/s; (b) 1836 ft/s; (c) ~1732.3f2t /s; (d) 432(4 + Ax); (e) 1728 ft/s; (f)8 64x ft/s; (g) 4665.6 ft/s; (h) 1/3 ft 3. -2 5. 10x -2 1 4 + + 7. 6 ~ 2- 9. 99 11. 2 ~ 3+ 1 3. 2 ~ 3-x2 15. - 17. - 19. (u) AV = -$3? A7 37(A7)’ AT)^); (b) r = 2, A7 = 1 3x3 2& 3 4?r gives AV = -4?r * l9 ; r’= 20, Ar = 1 gives AV = -* 1261; (c) 4 ~ 7(~d); t hey are equal-a sphere grows by spherical shells 21. (a) 144 - 32x; 3 3 (6) 4.5 s; (c) 324 ft; (d) x = 9, - 144 ft/s; (e) 324 ft; (f) f’ See. 2.4 > < < > 1- (a) f’ (b) sincef’(x) = -2x,,f(x) 0 for x 0,f(x) = 0 for x = 0,f(x) 0 for x 0; (c)y - 2 = -2(x - 1) + 3. (a) f’ (6) sincef’(x) = 3, the slope is always positive; (c)y 2 = 3(x - 1) (same as graph) (6) sincef’(x) = -32, the slope is everywhere negative except at 0; (c)y= -3(x - 1) 9. since lirn 6= 0, S-O+ + then lirn _1_ = co; thus there is a vertical tangent at x = 0 11 . (a) __-1 _ ;(b)lima=-m 17.x<3 19.(u)l;(b)l;(c)l; x-o+ 2 6 (x - 1)2 c-1 dx (d) - \/loo=: 0.05 # 1; (e) horizontal distance between points with samey coordinate is constant; (f) they are horizontally parallel, but not vertically parallel See. 2.5 l.5/12 3. fi 5.4 7. -1/25 9.4 11.lim 15. yes 17. f is disc. at x = 1 x-0 19.fis disc. at x = %2 21. fis disc. at x = 2 25. S(X) = [XI is disc. at every integer value 27. definef(x) = 0 and g(x) = 0; then + + lirn [f(x) g(x)] = lim [O] = 0 =f(0) g(0) x-0 x-0 ANSWERS TO ODD-NUMBERED EXERClSES/SELF-TESTS A-5 Review Exercises 1. (u) x2 + 3x - 1; 3; (b) 3x3 - x2; 2; (c) -3; x - 1 2; (d) 3x2 - 1; 2; (e) (3x - 1)’; 4; (f)3 (3x - 1) - I; 5; (g) (x2)2; 1 3. (a) ;1 + x + 5; 7; X2 8; (d) 3x4 + 5; 8; (e) 3x4 + 5; 8; (f) 3(3x4 + 5)4 + 5; 3*84+ 5; (9) x; 1 7. (a)x 2 - 3x + 2; 0; (6) 4(x2 - 3x - 2); -16; (c) 4 . -I; (d) 4; 4; (e) 2m; 2; cf) ,4; 4; (g) (x2 - 3x - 2)’ - 3(x2 - 3x - 2) - 2; 26 9. (u) -+ 2x2; not defined at 1; (b) 2x2-; x2 - 3x n-o t2 ’ defined at 1; (c) 7not ,defined at 1; (d) d m ;not defined at 1; (e) 2(x - 3); not defined at 1, since g(f(l)) is impossible; 2x => 2x 2 (f) d z 3 ;not defined at 1; (g) 8x4; 8 11. (a)_ x2 _-_ 4 ’ -5;(b ) ’ -1/3; (c) *x. - 2’ -3; (d) -,-2x - 3’ 2x - 3’’ 1; (f) Gx-2 ,’ T-1 ;(9) -. x + 2 -3 13. f(x) = (g o h)(x), where h(x) = x + 1 and g(x) = x3 15. h(x) = (fo g)(x), where g(x) = x2 and 2xf5’ 7 f(x) = 3x3 + 4.9 + 2~ 17. (a)y = 3(2r)’ - 2(2r) - 2; ( b )=~ 3(3t + 1)’ - 2(3t + 1) - 2; (C)Y = 3(t + At)’ - 2(t + At) - 2; (d)y = 3(m2)’ - 2(w2) - 2; (e)y = 3(3~-)~ 2 (3u) - 2 19. not a function of x 2 1. is a function of x 23. is a function of x 25. is a function of x x2 - 5x ifx#O 27. (a) h(x) = x - 5, x # 0; (b) h(x) = (-5 ifx=O 29. (u) h(x) = x + 3, x # 4; (b) h(x) = x2-x- 12 ifx # 4 (7 ifx = 4 31. (u) limg(x) = 8 35. lim (2 - 3x) = - 1 37. only number 31 39. (a) lim- x2 - 5x = -5; (6) lim x2-x- 12 = 7 x+4 x-1 2-0 x x-4 x - 4 41. lim 2(x - 5) = 2; lim 2(x - 5) = -2 45. (u) g’(x) = 1 - -1; (b)y - 3/2 = 0 47. (u)f(t)= --;2 (b)y - 4 = -2(t - 1) 2-5+ ~ Ix - 5) z-5- ~ Ix - 5) X2 t3 49. (a) -4 = -1 . (6) x = 1 is not in the domain 51. (a) g’(x) = --; 3 (b)y - 1 = -3(x - 1) 53. (u)f(u)= 3u2 - IOU; dx ~ 2 m ’ x4 + (b)y 4 = -7(u - 1) 55. (u) h’(r) = 12r; (b)y- 16 = 12(r - 1) 57. cont. everywhere 59. disc. at x = 2 x X Ix= I Self -Test 1. (u) (f- g)(x) = -2 + 5x - 1; (b) cf.g)(x) = (7x - 1)(X* + 2x); (6) (f/g)(x) = -7x +- 1 ’ (d) (fog)(x) = 7(x2 + 2x) - 1; x2 2x’ (e) (g ~f)(x=) (7x - 1)’ + 2(7x - 1); (f) (fof)(x) = 7(7x - 1) - 1 2. (a) f; (b) 1/6 3. (a) x = - 1; (6) x = 9 4. (u) 20; (6) 20; (c) 20; (d) 20 5. no 6. (a) cont. on [a, c) U (c, d) U (d, e) U (3,f) U (J; k]; (6) diff. everywhere except at b, c, d, e,J; h; (c) discont. at c, d, e,f Chapter 3 See. 3.1 1. f(x) = -2 3. g’(x) = 3.9 + lox 5. f’(x) = 0.01 7. t’(x) = (x2 + 1)(21x2 + 6x + 1) + 2x(7x3 + 3x2 + x - 3) (t3 + 3t2)(8t + 1) - (4t2 + l)(3t2 + 6t) + -1 13. -4 = (4x3 + x)( - 14~)- (7~’+ 2)(12~’+ 1) 9. f(t)= + 1 11. h’(s) = __+ _ + + +(t 3 3t2)+2 + + + (s 112 dx + + (4x3 x)2 + 15. fyx) = (x2 3)“x 1)(2x) (x2 2) * I] - (x 1)(9 2)2x 17. g’(x) = 0 - l[(x3 3x2)(7) (7x - 2)(3x2 6x)l (x2 + 3)‘ (x3 + 3X2)2(7X - 2)2 + + + + 19. n’(y) = (@‘ - 9)[(Y2- 5!)(4Y3 2) (y4 2y - 1)(23~- 5)] - (y2- 5y)(y4 2y - 1)*6 + + + (6Y - 912 21. 7’(X) = - 4x-5 - (x3 2x +1) 2x -+ XZ(3X2 2) 23. -dU = (x + l)[(x4 + x3 + 1)(6x - 7) + (3x2 - 7x)(4x3 + 32)] + (x3 2x 1)2 dx A-6 ANSWERS TO ODD-NUMBERED EXERCISES/SELF-TESTS + + dy (x2 - 3)(2) - (2x + 4)(2x) (x2 - x + 1)(6x2) - (2x3 + 1)(2x - 1) (x“ x3 1)(3x2 - 7~)(1) 25. - = - + dx (x2 - 3)2 (x2 - x 1)2 0 - l(2v - 324 +- 0 - 6(2u) 1 27. f’(o) = (v2 - u3)2 (W 3 1. (a) 44; (b)y - 33 = 44(x - 2); (c) y - 33 = - -4(x4 - 2) 33. for all x +# 0, -+ 1 - 2u’(x) -2(4x3 3x2 2x) 35. (u) h’(t) = 120 - 32t; (b) 321 ft; (6) t = 15/2 39. f ( ~= )~[ u(x)][u’(x)] 41. ~ 14413 = h‘(x) 43. f’(X) = (x4 + x3 + x2 + 3)3 19. f(z) = 6(z4+ - 32 - 2)5(4.“ - 3+) 2 I. f(y) += (y+3 + 1)+“ * 7(5y2 - y + 2)6+( lO y - 1) + +(5y 2 - y + 2)? -4(y3 + 1)3(3y2) 23. g’(x) = (x2 ZX)’/~(-~/~)(X5~~ )-~/’(5x” 5) (x5 5~)-’/~(1/5)(x~ 2x)-“I5(2x 2) + + + + + + 25. m’(t) = (t 2)1/2(1/3)(t2 t)-2/3(2t 1) (t2 t)1/3(l/2)(t 2)-1/2(1) 27. f(h)= -(- ‘I2 . (h + 1)+ * 1 - h(1) (3h2 + h)(3h2 + 1) +- (h3 + h)(6h + 1) 2 h + l (h 1)2 (3h2 h)2 29. f(t) = -1(t 4 + 1)-’”(4t3) - (t3 + t2 + t + 1)-5/3(3t2 + 2t + 1) 2 + + + + (x4 l)’l3(l/2)(x5 4)-’/2(5x4) - (x5 4)1/2(1/3)(x4 1)-2/3(4x3) 31. h’(x) = + 33. (a) dy/dx = -x/y; (6) &/dy = -y/x ~ ( ~ 14)1/3 12 + + 35. (a) dy/dx = ( 2-~ 3 Y)/(3x 3~’); (b) dx/dy = ( 3 ~ 3 y2)/(2x - 3y) 37. (a) dy/dx = -xy2/xTy = -y/x; (6) dx/dy = -x/y 39. (u) dy/dx = - (1/(21)/y21)x/21x/2-1y/-21 /2 +- y- 1xy --2 1 ; (b) dx/dy is l/(dy/dx) 41. (a) dy/dx = (x + 22)y2x 2- 2xyz ; (6) dx/dy is l/dy/dx , , ~ 43. dy/dx = dx/dy = -1 fory # -x 45. 1 = dy/dx 47. (u) y - 5 = -2(x - 5); (b) yes 49. dy/dx = 2/5 51. Au = 3, Ag = 33 See. 3.3 7. (u) dy = --dx3x4; (b) --130 9. (u) df= 2(x- - 1 4-)1 /12(0x5~ -4-( 1~ )42 ) . (2t + 3) dt; (b) d f 0.~000 000023 1 1. (a) dy/dx = 5x/2y; (b) dX/dy = 2y/5~ 13. (u) dy/dx = -(39 +y2)/(2~-~ 3~’); (b) dX/’dy = -(~xY - 3y2)/(3xZ +y2) 15. (u) dy/dx = (5x4 + 3~3~)/(5y-“ 3x57; (b) dx/dy = (5y“ - 3~5~)/(5x+“ 3x33) 17. (u) dy/dx = -(3x2 + +y1/2x-1/2 + y2)/(2xy + ij~l/2y-~/~(b)); dx/dy = -(29 + + iy1/2x-1/2 +y2) See. 3.4 1. f’(x) = 3x2 + 2x,f”(x) = 6x + 2,f”’(x) = 6 3. g’(x) = -!k3g”(,x ) = 6x-“, g”’(x) = - 2 4 ~5~. f ’(t) = ft-’/’,f’(t) = + + + f’”(t) = 7. f’(x) = 0 =f”(x) =f”(x) 9. h’(r) = 5(r 4)4, h”(r) = 20(r 4)3, h”’(r) = 60(r 4)* + (3y 1).1 -y.3 + + + + 11. m’(y) = = (3y 1)-2, m”(y) = -2(3Y 1)-3(3) = -6(3 1)-3, m”’(y) = 54(3y 1)-4, + (3Y 13. n(n - 1). . . (n - k + 15. -n(-n - 1)(-n - 2)~-%-~1 7. acc. = s”(t) = 24t2 - 8 19. acc. =f”(t) = 24t - 6 > < 2 1. y” = 2a; conc. up if a 0, con. down if a 0 23. - 32 Review Exercises. 1. y(x)= -x(l - x2)-’/’ 3. g’(t) = (t - 5)11*4(ti + 1)-’l3(7t6) + (ti + 1)1/3*11 *(t - 5)’O S.f(x) = -i(x + 4)-3/2 7. f’(x) = -1(- -)x -1-415 . (x + l -+x + l ) 9. y’ = (x2 + l)50. 10(x2 - 1)9 * 2x + (x2 - 1)1° * 50(x2 + 1)49. 2x 5 x + l (x 1)2 11 51.. fh’(’x()x ) == 44([u(xx32 ++ 4bxx +- Cl))(~x(5~ -U.+ Yx 2b +) x1 +3 .2 f)’I(3x[)( x3= + & 4lx +- (13x)( 5-x 45 -)6 )2-1x’ 2+. 61()3 +x -(x 55) -5 * x32 + x + 2)(3x2 + 4)] + + + + 17. p’(s) = f(s4 s3 s2)-1/4(4s3 3s2 2s) 19. t’(x) = 0 2 1. g’(z) = #(llz - 4~~)-~/~-( 8121) + 23. t’(w) = (1 w2)(-1) + - (1 - w)2w 25. gyy) = (y - 1)1/2.+(~+ 1)-2/3 + (y + 1)1/3-4(y - i)-1/2 27. g‘(x) = (x2 + 1)5((1~ 7+ wx)2~) U-7 (~4+ 1)6-4~3+ (x2 + 1)5(x4 + l)i1*0( x7 + X ) ~ ( ~+ X1)~ + (x7 + x)1°(x4 + l)?.5(x2 + l)4(2x) by Sec. 3.1, ANSWERS TO ODD-NUMBERED EXERCISES/SELF-TESTS A-7 Ex. 45 29. t‘(s) = *9(s - 4)8 + (s - 4)g*-(1-) s+ 1-1’2 [ s- 1 -(s+ 1) ] 3 1. f”(x) = 6x 2 s-1 (s - 1)2 33. m’(t) = 71/72 35. g’(x) = (x + l)l0(x2 + 1)”4(x3 + 1)”3x2) + (x + l)‘’(x3 + 1)4*5(x2+ l)4(2x) + (2+ 1)5(x3 + l)4-10(x+ 1)9 37. (a)y’ = (3x + 2y)/(y - x); (b)y - 2 - 2 fi=(7 4fi) *(x - 1) 39. (a) dy/dx = -(sXy2 + 14x)/(5y4 + 6x5); +Z f i (b)y - 1 = -50\/137/ 10 (X - m)4 1. dy/dx = -(2xy2 + 3~$~)/(2x+3 3x9’) 43. (a) dy/dx = (y2 -y)/-(x + 8y2); (T6) - 1 2fi-3 (b)Y - = (x - 4) 45. (a) dy/dx = -y3/x3; (b)y - 2 = 3*(x - 2/*) 47-55. In every case, dx/+ = l/dy/dx ~ 44 67. f(31) zf(32) + df= 2 - b = 1.9875 69. 0.94 7 1. 0.09833 73. 0.33 75. 195.8 gal 77. (a) vel. inc. if t < 1; vel. dec. if > < < > > < t 1; (b) moving away for 0 t 2 and t 3 79. f’(x) = 0 =f”(x) 8 1. if x 0 the slopes inc. and if x 0 the slopes dec. 83. (a) ~(t=) 144 - 32; (b) t = 9/2 S, h(9/2) = 324 ft 85. t = 96 Self-Test + + + + dy (x7 x6)(l/2)(x3 4)-’/’(3x2) - (x3 4)l/’(7x6 6x7 dy + 1. (a) - = + ; (b) - = (x2 1)4/5(8)(-~ dx (x7 x92 dx 3y - 2xy+2 2. -d2y- - (2x5 - 3~ + 2~)(3(dy/dx)- 4xy(dy/dx) - 2y2) - (+3y - 2xy2)(2x2(dy/dx) + 4xy - 3 + 2(dy/dx)) 3. -0.012 2x3 - 3x 2y dx2 (2x3 - 3x 2y2) 4. (a) x = 2; (b) -4 5. 360/t7 Chapter 4 See. 4.1 1. vert.: x = 2, obl.:y = x + 2 3. none 5. hor.:y = 3/4 7. note: no vert. at x = - 1/3 as u only defined for 1x121 hor.:y = 1/3 + 9. vert.: x = -1, hor.:y = 1 11. vert.: x = 2, obl.:y = x 2 13. vert.: x = -9/2, obl.:y = x/2 - 7/4 15. vert.: x = 0, hor.:y = 0 17. hor.:y = 0 19. vert.: t = 1/2 21. vert.: x = -1, obl.:y = x - 2 23. vert.: x = (3 i- a ) / 2 25. hor.:y = 1 See. 4.2 < < (6) C.U. on (x2, xJ, (x4, a), where x5 a x6, (x7, x9); c.d. on (x,,, xz), (u, x7); (c) rel. max. at x = xI, x4, x6, rel. min. at x = x3, x5, xs; (d) all but xq, (e) at x = x2, x7; (Aa t x = a bet. x5 and x6 5. (a) (-00, -2), (1, +00); (b) (-2, 1); (c) x = -2, l;f(-2) = 16,f(l) = -11 7. (a) inc. for all x; (6) none 9. (a) (-4,0), (4. +w); (b) (-00, -4), (0,4); (6) rel. min. x = *4,f(?4) = 0; A. max. x = 0,f(0)= 256 < 13. c.d. everywhere 15. c.d. for x 3; 3 > C.U. for x 3; p.i. x = 3 See. 4.3 I. i-:Ij13. 15. 17. t’ A-8 ANSWERS TO ODD-NUMBERED EXERCISES/SELF-TESTS t’ 31. 33. +y 27-+ 29- I x= -1 x = l See. 4.4 1. no deriv. at x = 1 3. no deriv. at x = 0 5. no deriv. at x = 0 9. c = kfi 11. c = 1 13. c = &1/(3fi) 15. c = 0 17. c can be any value in the interval since tangent line = graph Review Exercises 1. l;hor.asy.y=l 3. +w;vert.asy.x=O 5. +w;vert.asy.x=2 7. -w;obl.asy.y=jx-j 9.0;noasy. 11.incr. (-W, 1/2); decr. (1/2, +w); rel. max. x = 1/2 13. decr. for all x 15. inc. for all t 17. C.U. (-a,1); c.d. (1, +w); p.i. x = 1 19. c.d. (-1 fi,l /fi); C.U. elsewhere; pi. x = %l/fi 21. (-1606,) (2/3, - 16/27)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.