ebook img

Calculus, once again PDF

194 Pages·2007·1.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus, once again

CalcCualagoluanacsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCgunleaaoliunacns,cCguleaaoliunacns,cguleaoiunans,cgeaoiCnanacgleaciCuanlagluacsi,Cunlalucs,Culalucs,ulouns,ceonce DavidA.SANTOS [email protected] July 17, 2008 Version ii Copyright©2007DavidAnthonySANTOS.Permissionisgrantedtocopy,distributeand/ormodifythisdocu- mentunderthetermsoftheGNUFreeDocumentationLicense,Version1.2oranylaterversionpublishedby theFreeSoftwareFoundation; withnoInvariantSections, noFront-CoverTexts, andnoBack-CoverTexts. A copyofthelicenseisincludedinthesectionentitled“GNUFreeDocumentationLicense”. GNU Free Documentation License Version1.2,November2002 Copyright©2000,2001,2002FreeSoftwareFoundation,Inc. 51FranklinSt,FifthFloor,Boston,MA02110-1301USA Everyoneispermittedtocopyanddistributeverbatimcopiesofthislicensedocument,butchangingitisnotallowed. Preamble ThepurposeofthisLicenseistomakeamanual,textbook,orotherfunctionalandusefuldocument“free”inthesenseoffreedom:toassureeveryonetheeffectivefreedomtocopyandredistributeit,withorwithoutmodifyingit,either commerciallyornoncommercially.Secondarily,thisLicensepreservesfortheauthorandpublisherawaytogetcreditfortheirwork,whilenotbeingconsideredresponsibleformodificationsmadebyothers. ThisLicenseisakindof“copyleft”,whichmeansthatderivativeworksofthedocumentmustthemselvesbefreeinthesamesense.ItcomplementstheGNUGeneralPublicLicense,whichisacopyleftlicensedesignedforfreesoftware. WehavedesignedthisLicenseinordertouseitformanualsforfreesoftware,becausefreesoftwareneedsfreedocumentation:afreeprogramshouldcomewithmanualsprovidingthesamefreedomsthatthesoftwaredoes.ButthisLicense isnotlimitedtosoftwaremanuals;itcanbeusedforanytextualwork,regardlessofsubjectmatterorwhetheritispublishedasaprintedbook.WerecommendthisLicenseprincipallyforworkswhosepurposeisinstructionorreference. 1. APPLICABILITY ANDDEFINITIONS ThisLicenseappliestoanymanualorotherwork,inanymedium,thatcontainsanoticeplacedbythecopyrightholdersayingitcanbedistributedunderthetermsofthisLicense.Suchanoticegrantsaworld-wide,royalty-freelicense, unlimitedinduration,tousethatworkundertheconditionsstatedherein.The“Document”,below,referstoanysuchmanualorwork.Anymemberofthepublicisalicensee,andisaddressedas“you”.Youacceptthelicenseifyoucopy,modify ordistributetheworkinawayrequiringpermissionundercopyrightlaw. A“ModifiedVersion”oftheDocumentmeansanyworkcontainingtheDocumentoraportionofit,eithercopiedverbatim,orwithmodificationsand/ortranslatedintoanotherlanguage. A“SecondarySection”isanamedappendixorafront-mattersectionoftheDocumentthatdealsexclusivelywiththerelationshipofthepublishersorauthorsoftheDocumenttotheDocument’soverallsubject(ortorelatedmatters)and containsnothingthatcouldfalldirectlywithinthatoverallsubject.(Thus,iftheDocumentisinpartatextbookofmathematics,aSecondarySectionmaynotexplainanymathematics.)Therelationshipcouldbeamatterofhistoricalconnection withthesubjectorwithrelatedmatters,oroflegal,commercial,philosophical,ethicalorpoliticalpositionregardingthem. The“InvariantSections”arecertainSecondarySectionswhosetitlesaredesignated,asbeingthoseofInvariantSections,inthenoticethatsaysthattheDocumentisreleasedunderthisLicense.Ifasectiondoesnotfittheabovedefinition ofSecondarythenitisnotallowedtobedesignatedasInvariant.TheDocumentmaycontainzeroInvariantSections.IftheDocumentdoesnotidentifyanyInvariantSectionsthentherearenone. The“CoverTexts”arecertainshortpassagesoftextthatarelisted,asFront-CoverTextsorBack-CoverTexts,inthenoticethatsaysthattheDocumentisreleasedunderthisLicense.AFront-CoverTextmaybeatmost5words,anda Back-CoverTextmaybeatmost25words. A“Transparent”copyoftheDocumentmeansamachine-readablecopy,representedinaformatwhosespecificationisavailabletothegeneralpublic,thatissuitableforrevisingthedocumentstraightforwardlywithgenerictexteditorsor (forimagescomposedofpixels)genericpaintprogramsor(fordrawings)somewidelyavailabledrawingeditor,andthatissuitableforinputtotextformattersorforautomatictranslationtoavarietyofformatssuitableforinputtotextformatters. AcopymadeinanotherwiseTransparentfileformatwhosemarkup,orabsenceofmarkup,hasbeenarrangedtothwartordiscouragesubsequentmodificationbyreadersisnotTransparent.AnimageformatisnotTransparentifusedforany substantialamountoftext.Acopythatisnot“Transparent”iscalled“Opaque”. ExamplesofsuitableformatsforTransparentcopiesincludeplainASCIIwithoutmarkup,Texinfoinputformat,LaTeXinputformat,SGMLorXMLusingapubliclyavailableDTD,andstandard-conformingsimpleHTML,PostScriptorPDF designedforhumanmodification.ExamplesoftransparentimageformatsincludePNG,XCFandJPG.Opaqueformatsincludeproprietaryformatsthatcanbereadandeditedonlybyproprietarywordprocessors,SGMLorXMLforwhichthe DTDand/orprocessingtoolsarenotgenerallyavailable,andthemachine-generatedHTML,PostScriptorPDFproducedbysomewordprocessorsforoutputpurposesonly. The“TitlePage”means,foraprintedbook,thetitlepageitself,plussuchfollowingpagesasareneededtohold,legibly,thematerialthisLicenserequirestoappearinthetitlepage.Forworksinformatswhichdonothaveanytitlepageas such,“TitlePage”meansthetextnearthemostprominentappearanceofthework’stitle,precedingthebeginningofthebodyofthetext. Asection“EntitledXYZ”meansanamedsubunitoftheDocumentwhosetitleeitherispreciselyXYZorcontainsXYZinparenthesesfollowingtextthattranslatesXYZinanotherlanguage.(HereXYZstandsforaspecificsectionname mentionedbelow,suchas“Acknowledgements”,“Dedications”,“Endorsements”,or“History”.)To“PreservetheTitle”ofsuchasectionwhenyoumodifytheDocumentmeansthatitremainsasection“EntitledXYZ”accordingtothisdefinition. TheDocumentmayincludeWarrantyDisclaimersnexttothenoticewhichstatesthatthisLicenseappliestotheDocument.TheseWarrantyDisclaimersareconsideredtobeincludedbyreferenceinthisLicense,butonlyasregards disclaimingwarranties:anyotherimplicationthattheseWarrantyDisclaimersmayhaveisvoidandhasnoeffectonthemeaningofthisLicense. 2. VERBATIMCOPYING YoumaycopyanddistributetheDocumentinanymedium,eithercommerciallyornoncommercially,providedthatthisLicense,thecopyrightnotices,andthelicensenoticesayingthisLicenseappliestotheDocumentarereproduced inallcopies,andthatyouaddnootherconditionswhatsoevertothoseofthisLicense.Youmaynotusetechnicalmeasurestoobstructorcontrolthereadingorfurthercopyingofthecopiesyoumakeordistribute.However,youmayaccept compensationinexchangeforcopies.Ifyoudistributealargeenoughnumberofcopiesyoumustalsofollowtheconditionsinsection3. Youmayalsolendcopies,underthesameconditionsstatedabove,andyoumaypubliclydisplaycopies. 3. COPYINGINQUANTITY Ifyoupublishprintedcopies(orcopiesinmediathatcommonlyhaveprintedcovers)oftheDocument,numberingmorethan100,andtheDocument’slicensenoticerequiresCoverTexts,youmustenclosethecopiesincoversthatcarry, clearlyandlegibly,alltheseCoverTexts:Front-CoverTextsonthefrontcover,andBack-CoverTextsonthebackcover.Bothcoversmustalsoclearlyandlegiblyidentifyyouasthepublisherofthesecopies.Thefrontcovermustpresentthefull titlewithallwordsofthetitleequallyprominentandvisible.Youmayaddothermaterialonthecoversinaddition.Copyingwithchangeslimitedtothecovers,aslongastheypreservethetitleoftheDocumentandsatisfytheseconditions,canbe treatedasverbatimcopyinginotherrespects. Iftherequiredtextsforeithercoveraretoovoluminoustofitlegibly,youshouldputthefirstoneslisted(asmanyasfitreasonably)ontheactualcover,andcontinuetherestontoadjacentpages. IfyoupublishordistributeOpaquecopiesoftheDocumentnumberingmorethan100,youmusteitherincludeamachine-readableTransparentcopyalongwitheachOpaquecopy,orstateinorwitheachOpaquecopyacomputer-network locationfromwhichthegeneralnetwork-usingpublichasaccesstodownloadusingpublic-standardnetworkprotocolsacompleteTransparentcopyoftheDocument,freeofaddedmaterial.Ifyouusethelatteroption,youmusttakereasonably prudentsteps,whenyoubegindistributionofOpaquecopiesinquantity,toensurethatthisTransparentcopywillremainthusaccessibleatthestatedlocationuntilatleastoneyearafterthelasttimeyoudistributeanOpaquecopy(directlyor throughyouragentsorretailers)ofthateditiontothepublic. Itisrequested,butnotrequired,thatyoucontacttheauthorsoftheDocumentwellbeforeredistributinganylargenumberofcopies,togivethemachancetoprovideyouwithanupdatedversionoftheDocument. 4. MODIFICATIONS YoumaycopyanddistributeaModifiedVersionoftheDocumentundertheconditionsofsections2and3above,providedthatyoureleasetheModifiedVersionunderpreciselythisLicense,withtheModifiedVersionfillingtheroleofthe Document,thuslicensingdistributionandmodificationoftheModifiedVersiontowhoeverpossessesacopyofit.Inaddition,youmustdothesethingsintheModifiedVersion: A. UseintheTitlePage(andonthecovers,ifany)atitledistinctfromthatoftheDocument,andfromthoseofpreviousversions(whichshould,iftherewereany,belistedintheHistorysectionoftheDocument).Youmayusethesame titleasapreviousversioniftheoriginalpublisherofthatversiongivespermission. B. ListontheTitlePage,asauthors,oneormorepersonsorentitiesresponsibleforauthorshipofthemodificationsintheModifiedVersion,togetherwithatleastfiveoftheprincipalauthorsoftheDocument(allofitsprincipalauthors, ifithasfewerthanfive),unlesstheyreleaseyoufromthisrequirement. C. StateontheTitlepagethenameofthepublisheroftheModifiedVersion,asthepublisher. iii iv D. PreserveallthecopyrightnoticesoftheDocument. E. Addanappropriatecopyrightnoticeforyourmodificationsadjacenttotheothercopyrightnotices. F. Include,immediatelyafterthecopyrightnotices,alicensenoticegivingthepublicpermissiontousetheModifiedVersionunderthetermsofthisLicense,intheformshownintheAddendumbelow. G. PreserveinthatlicensenoticethefulllistsofInvariantSectionsandrequiredCoverTextsgivenintheDocument’slicensenotice. H. IncludeanunalteredcopyofthisLicense. I. PreservethesectionEntitled“History”,PreserveitsTitle,andaddtoitanitemstatingatleastthetitle,year,newauthors,andpublisheroftheModifiedVersionasgivenontheTitlePage.IfthereisnosectionEntitled“History”inthe Document,createonestatingthetitle,year,authors,andpublisheroftheDocumentasgivenonitsTitlePage,thenaddanitemdescribingtheModifiedVersionasstatedintheprevioussentence. J. Preservethenetworklocation,ifany,givenintheDocumentforpublicaccesstoaTransparentcopyoftheDocument,andlikewisethenetworklocationsgivenintheDocumentforpreviousversionsitwasbasedon.Thesemaybe placedinthe“History”section.YoumayomitanetworklocationforaworkthatwaspublishedatleastfouryearsbeforetheDocumentitself,oriftheoriginalpublisheroftheversionitreferstogivespermission. K. ForanysectionEntitled“Acknowledgements”or“Dedications”,PreservetheTitleofthesection,andpreserveinthesectionallthesubstanceandtoneofeachofthecontributoracknowledgementsand/ordedicationsgiventherein. L. PreservealltheInvariantSectionsoftheDocument,unalteredintheirtextandintheirtitles.Sectionnumbersortheequivalentarenotconsideredpartofthesectiontitles. M. DeleteanysectionEntitled“Endorsements”.SuchasectionmaynotbeincludedintheModifiedVersion. N. DonotretitleanyexistingsectiontobeEntitled“Endorsements”ortoconflictintitlewithanyInvariantSection. O. PreserveanyWarrantyDisclaimers. IftheModifiedVersionincludesnewfront-mattersectionsorappendicesthatqualifyasSecondarySectionsandcontainnomaterialcopiedfromtheDocument,youmayatyouroptiondesignatesomeorallofthesesectionsasinvariant. Todothis,addtheirtitlestothelistofInvariantSectionsintheModifiedVersion’slicensenotice.Thesetitlesmustbedistinctfromanyothersectiontitles. YoumayaddasectionEntitled“Endorsements”,provideditcontainsnothingbutendorsementsofyourModifiedVersionbyvariousparties–forexample,statementsofpeerrevieworthatthetexthasbeenapprovedbyanorganizationas theauthoritativedefinitionofastandard. YoumayaddapassageofuptofivewordsasaFront-CoverText,andapassageofupto25wordsasaBack-CoverText,totheendofthelistofCoverTextsintheModifiedVersion.OnlyonepassageofFront-CoverTextandoneofBack-Cover Textmaybeaddedby(orthrougharrangementsmadeby)anyoneentity.IftheDocumentalreadyincludesacovertextforthesamecover,previouslyaddedbyyouorbyarrangementmadebythesameentityyouareactingonbehalfof,youmay notaddanother;butyoumayreplacetheoldone,onexplicitpermissionfromthepreviouspublisherthataddedtheoldone. Theauthor(s)andpublisher(s)oftheDocumentdonotbythisLicensegivepermissiontousetheirnamesforpublicityforortoassertorimplyendorsementofanyModifiedVersion. 5. COMBINING DOCUMENTS YoumaycombinetheDocumentwithotherdocumentsreleasedunderthisLicense,underthetermsdefinedinsection4aboveformodifiedversions,providedthatyouincludeinthecombinationalloftheInvariantSectionsofallofthe originaldocuments,unmodified,andlistthemallasInvariantSectionsofyourcombinedworkinitslicensenotice,andthatyoupreservealltheirWarrantyDisclaimers. ThecombinedworkneedonlycontainonecopyofthisLicense,andmultipleidenticalInvariantSectionsmaybereplacedwithasinglecopy.IftherearemultipleInvariantSectionswiththesamenamebutdifferentcontents,makethetitle ofeachsuchsectionuniquebyaddingattheendofit,inparentheses,thenameoftheoriginalauthororpublisherofthatsectionifknown,orelseauniquenumber.MakethesameadjustmenttothesectiontitlesinthelistofInvariantSectionsin thelicensenoticeofthecombinedwork. Inthecombination,youmustcombineanysectionsEntitled“History”inthevariousoriginaldocuments,formingonesectionEntitled“History”;likewisecombineanysectionsEntitled“Acknowledgements”,andanysectionsEntitled “Dedications”.YoumustdeleteallsectionsEntitled“Endorsements”. 6. COLLECTIONS OFDOCUMENTS YoumaymakeacollectionconsistingoftheDocumentandotherdocumentsreleasedunderthisLicense,andreplacetheindividualcopiesofthisLicenseinthevariousdocumentswithasinglecopythatisincludedinthecollection, providedthatyoufollowtherulesofthisLicenseforverbatimcopyingofeachofthedocumentsinallotherrespects. Youmayextractasingledocumentfromsuchacollection,anddistributeitindividuallyunderthisLicense,providedyouinsertacopyofthisLicenseintotheextracteddocument,andfollowthisLicenseinallotherrespectsregarding verbatimcopyingofthatdocument. 7. AGGREGATIONWITHINDEPENDENT WORKS AcompilationoftheDocumentoritsderivativeswithotherseparateandindependentdocumentsorworks,inoronavolumeofastorageordistributionmedium,iscalledan“aggregate”ifthecopyrightresultingfromthecompilation isnotusedtolimitthelegalrightsofthecompilation’susersbeyondwhattheindividualworkspermit.WhentheDocumentisincludedinanaggregate,thisLicensedoesnotapplytotheotherworksintheaggregatewhicharenotthemselves derivativeworksoftheDocument. IftheCoverTextrequirementofsection3isapplicabletothesecopiesoftheDocument,theniftheDocumentislessthanonehalfoftheentireaggregate,theDocument’sCoverTextsmaybeplacedoncoversthatbrackettheDocument withintheaggregate,ortheelectronicequivalentofcoversiftheDocumentisinelectronicform.Otherwisetheymustappearonprintedcoversthatbracketthewholeaggregate. 8. TRANSLATION Translationisconsideredakindofmodification,soyoumaydistributetranslationsoftheDocumentunderthetermsofsection4.ReplacingInvariantSectionswithtranslationsrequiresspecialpermissionfromtheircopyrightholders,but youmayincludetranslationsofsomeorallInvariantSectionsinadditiontotheoriginalversionsoftheseInvariantSections.YoumayincludeatranslationofthisLicense,andallthelicensenoticesintheDocument,andanyWarrantyDisclaimers, providedthatyoualsoincludetheoriginalEnglishversionofthisLicenseandtheoriginalversionsofthosenoticesanddisclaimers.IncaseofadisagreementbetweenthetranslationandtheoriginalversionofthisLicenseoranoticeordisclaimer, theoriginalversionwillprevail. IfasectionintheDocumentisEntitled“Acknowledgements”,“Dedications”,or“History”,therequirement(section4)toPreserveitsTitle(section1)willtypicallyrequirechangingtheactualtitle. 9. TERMINATION Youmaynotcopy,modify,sublicense,ordistributetheDocumentexceptasexpresslyprovidedforunderthisLicense.Anyotherattempttocopy,modify,sublicenseordistributetheDocumentisvoid,andwillautomaticallyterminateyour rightsunderthisLicense.However,partieswhohavereceivedcopies,orrights,fromyouunderthisLicensewillnothavetheirlicensesterminatedsolongassuchpartiesremaininfullcompliance. 10. FUTUREREVISIONS OFTHISLICENSE TheFreeSoftwareFoundationmaypublishnew,revisedversionsoftheGNUFreeDocumentationLicensefromtimetotime.Suchnewversionswillbesimilarinspirittothepresentversion,butmaydifferindetailtoaddressnewproblems orconcerns.Seehttp://www.gnu.org/copyleft/. EachversionoftheLicenseisgivenadistinguishingversionnumber.IftheDocumentspecifiesthataparticularnumberedversionofthisLicense“oranylaterversion”appliestoit,youhavetheoptionoffollowingthetermsandconditions eitherofthatspecifiedversionorofanylaterversionthathasbeenpublished(notasadraft)bytheFreeSoftwareFoundation.IftheDocumentdoesnotspecifyaversionnumberofthisLicense,youmaychooseanyversioneverpublished(notas adraft)bytheFreeSoftwareFoundation. Que a quien robe este libro, o lo tome prestado y no lo devuelva, se le convierta en una serpiente en las manosylovenza. Queseagolpeadopor laparálisisytodossus miembrosarruinados. Quelanguidezca dedolorgritandoporpiedad,yquenohayacotoasuagoníahastalaúltimadisolución. Quelaspolillas roansusentrañasy,cuandolleguealfinaldesucastigo,queardaenlasllamasdelInfiernoparasiempre. -MaldiciónanónimacontralosladronesdelibrosenelmonasteriodeSanPedro,Barcelona. Contents GNUFreeDocumentationLicense iii 1.APPLICABILITYANDDEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 2.VERBATIMCOPYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 3.COPYINGINQUANTITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 4.MODIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 5.COMBININGDOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 6.COLLECTIONSOFDOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 7.AGGREGATIONWITHINDEPENDENTWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 8.TRANSLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 9.TERMINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 10.FUTUREREVISIONSOFTHISLICENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Preface viii 1 Preliminaries 1 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 NumericalFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 InjectiveandSurjectiveFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 AlgebraofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 InverseImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 InverseFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Countability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 GroupsandFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 AdditionandMultiplicationinR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 OrderAxioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6.1 AbsoluteValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7 ClassicalInequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.1 TriangleInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.2 Bernoulli’sInequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.3 RearrangementInequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.4 ArithmeticMean-GeometricMeanInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.7.5 Cauchy-Bunyakovsky-SchwarzInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.7.6 Minkowski’sInequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.8 CompletenessAxiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.8.1 GreatestIntegerFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 v vi CONTENTS 2 TopologyofR 34 2.1 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 DenseSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 OpenandClosedSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Interior,Boundary,andClosureofaSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 ConnectedSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 CompactSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.7 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.8 LebesgueMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.9 TheCantorSet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Sequences 47 3.1 LimitofaSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 ConvergenceofSequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 ClassicalLimitsofSequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 AveragesofSequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5 OrdersofInfinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 CauchySequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.7 Topologyofsequences.LimitSuperiorandLimitInferior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4 Series 70 4.1 ConvergenceandDivergenceofSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 ConvergenceandDivergenceofSeriesofPositiveTerms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 SummationbyParts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4 AbsoluteConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 RealFunctionsofOneRealVariable 85 5.1 LimitsofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.3 AlgebraicOperationswithContinuousFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4 MonotonicityandInverseImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.5 ConvexFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.5.1 GraphsofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.6 ClassicalFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.6.1 AffineFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.6.2 QuadraticFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.6.3 PolynomialFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.6.4 ExponentialFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.6.5 LogarithmicFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.6.6 TrigonometricFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.6.7 InverseTrigonometricFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.7 ContinuityofSomeStandardFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.7.1 ContinuityPolynomialFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 CONTENTS vii 5.7.2 ContinuityoftheExponentialandLogarithmicFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.7.3 ContinuityofthePowerFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.8 InequalitiesObtainedbyContinuityArguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.9 IntermediateValueProperty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.10 VariationofaFunctionandUniformContinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.11 ClassicalLimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6 DifferentiableFunctions 113 6.1 DerivativeataPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2 DifferentiationRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3 Rolle’sTheoremandtheMeanValueTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.4 Extrema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.5 ConvexFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.6 InequalitiesObtainedThroughDifferentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.7 AsymptoticPreponderance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.8 AsymptoticEquivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.9 AsymptoticExpansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7 IntegrableFunctions 143 7.1 TheAreaProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.3 Riemann-StieltjesIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.4 Euler’sSummationFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 8 SequencesandSeriesofFunctions 160 8.1 PointwiseConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.2 UniformConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.3 IntegralsandDerivativesofSequencesofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.4 PowerSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.5 MaclaurinExpansionstoknowbyinspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.6 ComparisonTests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.7 TaylorPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.8 Abel’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 A AnswersandHints 163 AnswersandHints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Preface FormanyyearsIhavebeenluckyenoughtohavestudentsaskformore: morechallengingproblems,moreilluminating proofstodifferenttheorems,adeeperlookatvarioustopics,etc. TothosestudentsInormallyrecommendthebooksin thebibliography. Someofthesamestudentshavecomplainedofnotfindingthebooksorwantingtobuythem,butbeing impecunious,notbeingabletoaffordtobuythem.HenceIhavedecidedtomakethiscompilation. Herewetakeasemi-rigoroustourthroughCalculus. Wedon’tconstructtherealnumbers,butweexaminecloserthe realnumberaxiomsandsomeofthebasictheoremsofCalculus. WealsoconsidersomeOlympiad-levelproblemswhose solutioncanbeobtainedthroughCalculus. Thereaderisassumedtobefamiliarwithproofsusingmathematicalinduction,proofsbycontradiction,andtheme- chanicsofdifferentiationandintegration. DavidA.SANTOS [email protected] viii Chapter 1 Preliminaries Whybother? Wewill usethe languageofset theory throughout these notes. There arevariouselementary resultsthatpopupinlaterproofs,amongthem,theDeMorganLawsandtheMonotonicityReversingofCom- plementationRule. The conceptof a functionlies at thecoreofmathematics. Wewillgive abriefoverview hereof some basic propertiesoffunctions. 1.1 Sets Thissectioncontainssomeofthesetnotationtobeusedthroughoutthesenotes. Theone-directionalarrow reads =⇒ “implies”andthetwo-directionalarrow reads“ifandonlyif.” ⇐⇒ 1Definition Wewillacceptthenotionofsetasaprimitivenotion,thatis,anotionthatcannotbedefinedintermsofmore elementarynotions. Byasetwewillunderstandawell-definedcollectionofobjects,whichwewillcalltheelementsofthe set.IftheelementxbelongstothesetSwewillwritex S,andinthecontrarycasewewillwritex S.1 Thecardinalityof ∈ 6∈ asetisthenumberofelementsthesethas. Itcaneitherbefiniteorinfinite. WewilldenotethecardinalityofthesetS by card(S). + Somesetsareusedsooftenthatmeritspecialnotation.Wewilldenoteby N {0,1,2,3,...} = thesetofnaturalnumbers,by Z {..., 3, 2, 1,0,1,2,3,...}2 = − − − byQthesetofrationalnumbers3,byRtherealnumbers,andbyCthesetofcomplexnumbers.Wewilloccasionallyalsouse αZ {..., 3α, 2α, α,0,α,2α,3α,...},etc. = − − − Wewillalsodenotetheemptyset,thatis,thesethavingnoelementsby∅. 2Definition TheunionoftwosetsAandB istheset A B {x:(x A)or(x B)}. ∪ = ∈ ∈ Thisisread“AunionB.”Seefigure1.1.TheintersectionoftwosetsAandB is A B {x:(x A)and(x B)}. ∩ = ∈ ∈ 1GeorgCantor(1845-1918),thecreatorofsettheory,said“Asetisanycollectionintoawholeofdefinite,distinguishableobjects,calledelements,ofour intuitionorthought.” 2ZfortheGermanwordZählenmeaning“integer.” 3Qfor“quotients.” 1 Sets A B A B A B Figure1.1:A B Figure1.2:A B Figure1.3:A\B ∪ ∩ Thisisread“AintersectionB.”Seefigure1.2.ThesetdifferenceoftwosetsAandB is A\B {x:(x A)and(x B)}. = ∈ 6∈ Thisisread“AsetminusB.”Seefigure1.3. 3Definition TwosetsAandB aredisjointifA B ∅. ∩ = 4Example WriteA B asthedisjointunionofthreesets. ∪ Solution: Observethat A B (A\B) (A B) (B\A), ∪ = ∪ ∩ ∪ andthatthesetsonthedextralsidearedisjoint. 5Definition AsubsetB ofasetAisasubcollectionofA,andwedenotethisbyBjA.4 Thismeansthatx B x A. ∈ =⇒ ∈ + ∅andAarealwayssubsetsofanysetA. Observethat A B (A B) and (B A). = ⇐⇒ ⊆ ⊆ Weusethisobservationonthenexttheorem. 6THEOREM(DeMorganLaws) LetA,B,C besets.Then A\(B C) (A\B) (A\C), A\(B C) (A\B) (A\C). ∩ = ∪ ∪ = ∩ Proof: Wehave x A\(B C) x A and x (B or C) ∈ ∪ ⇐⇒ ∈ 6∈ (x A) and ((x B) and (x C)) ⇐⇒ ∈ 6∈ 6∈ (x A and x B) and (x A and x C) ⇐⇒ ∈ 6∈ ∈ 6∈ (x A\B) and (x A\C) ⇐⇒ ∈ ∈ x (A\B) (A\C). ⇐⇒ ∈ ∩ Also, x A\(B C) x A and x (B and C) ∈ ∩ ⇐⇒ ∈ 6∈ (x A) and ((x B) or (x C)) ⇐⇒ ∈ 6∈ 6∈ (x A and x B) or (x A and x C) ⇐⇒ ∈ 6∈ ∈ 6∈ (x A\B) or (x A\C) ⇐⇒ ∈ ∈ x (A\B) (A\C) ⇐⇒ ∈ ∪ q 4Thereseemsnottobeanagreementherebyauthors.Someusethenotation or insteadofj.Someseeinthenotation theexclusionofequality. ⊂ ⊆ ⊂ Inthesenotes,wewillalwaysusethenotationj,andifwewishedtoexcludeequalitywewillwrite . á 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.