ebook img

Calculus, once again PDF

189 Pages·2007·1.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus, once again

CalcCualagoluanacsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCguanleaagoliuanacnsi,cCguanleaagoliuanacnsi,cCgunleaaoliunacns,cCguleaaoliuCnacnsa,cCgulleaacoliuCunacnsla,cCgululeaacosliu,Cunacnsla,cCgululeaacosliu,Cunacnsla,cgululeacosiu,Cunansla,cglueacosi,Cunanlacgolueancosi,cCunanleacgolueancsi,cCuanleagoluanacsi,cCgunleaaoliunacns,cCguleaaoliunacns,cguleaoiunans,cgeaoiCnanacgleaciCuanlagluacsi,Cunlalucs,Culalucs,ulouns,ceonce DavidA.SANTOS [email protected] November 6, 2007 Version ii Copyright©2007DavidAnthonySANTOS.Permissionisgrantedtocopy,distributeand/ormodifythisdocu- mentunderthetermsoftheGNUFreeDocumentationLicense,Version1.2oranylaterversionpublishedby theFreeSoftwareFoundation; withnoInvariantSections, noFront-CoverTexts, andnoBack-CoverTexts. A copyofthelicenseisincludedinthesectionentitled“GNUFreeDocumentationLicense”. GNU Free Documentation License Version1.2,November2002 Copyright©2000,2001,2002FreeSoftwareFoundation,Inc. 51FranklinSt,FifthFloor,Boston,MA02110-1301USA Everyoneispermittedtocopyanddistributeverbatimcopiesofthislicensedocument,butchangingitisnotallowed. Preamble ThepurposeofthisLicenseistomakeamanual,textbook,orotherfunctionalandusefuldocument“free”inthesenseoffreedom:toassureeveryonetheeffectivefreedomtocopyandredistributeit,withorwithoutmodifyingit,either commerciallyornoncommercially.Secondarily,thisLicensepreservesfortheauthorandpublisherawaytogetcreditfortheirwork,whilenotbeingconsideredresponsibleformodificationsmadebyothers. ThisLicenseisakindof“copyleft”,whichmeansthatderivativeworksofthedocumentmustthemselvesbefreeinthesamesense.ItcomplementstheGNUGeneralPublicLicense,whichisacopyleftlicensedesignedforfreesoftware. WehavedesignedthisLicenseinordertouseitformanualsforfreesoftware,becausefreesoftwareneedsfreedocumentation:afreeprogramshouldcomewithmanualsprovidingthesamefreedomsthatthesoftwaredoes.ButthisLicense isnotlimitedtosoftwaremanuals;itcanbeusedforanytextualwork,regardlessofsubjectmatterorwhetheritispublishedasaprintedbook.WerecommendthisLicenseprincipallyforworkswhosepurposeisinstructionorreference. 1. APPLICABILITY ANDDEFINITIONS ThisLicenseappliestoanymanualorotherwork,inanymedium,thatcontainsanoticeplacedbythecopyrightholdersayingitcanbedistributedunderthetermsofthisLicense.Suchanoticegrantsaworld-wide,royalty-freelicense, unlimitedinduration,tousethatworkundertheconditionsstatedherein.The“Document”,below,referstoanysuchmanualorwork.Anymemberofthepublicisalicensee,andisaddressedas“you”.Youacceptthelicenseifyoucopy,modify ordistributetheworkinawayrequiringpermissionundercopyrightlaw. A“ModifiedVersion”oftheDocumentmeansanyworkcontainingtheDocumentoraportionofit,eithercopiedverbatim,orwithmodificationsand/ortranslatedintoanotherlanguage. A“SecondarySection”isanamedappendixorafront-mattersectionoftheDocumentthatdealsexclusivelywiththerelationshipofthepublishersorauthorsoftheDocumenttotheDocument’soverallsubject(ortorelatedmatters)and containsnothingthatcouldfalldirectlywithinthatoverallsubject.(Thus,iftheDocumentisinpartatextbookofmathematics,aSecondarySectionmaynotexplainanymathematics.)Therelationshipcouldbeamatterofhistoricalconnection withthesubjectorwithrelatedmatters,oroflegal,commercial,philosophical,ethicalorpoliticalpositionregardingthem. The“InvariantSections”arecertainSecondarySectionswhosetitlesaredesignated,asbeingthoseofInvariantSections,inthenoticethatsaysthattheDocumentisreleasedunderthisLicense.Ifasectiondoesnotfittheabovedefinition ofSecondarythenitisnotallowedtobedesignatedasInvariant.TheDocumentmaycontainzeroInvariantSections.IftheDocumentdoesnotidentifyanyInvariantSectionsthentherearenone. The“CoverTexts”arecertainshortpassagesoftextthatarelisted,asFront-CoverTextsorBack-CoverTexts,inthenoticethatsaysthattheDocumentisreleasedunderthisLicense.AFront-CoverTextmaybeatmost5words,anda Back-CoverTextmaybeatmost25words. A“Transparent”copyoftheDocumentmeansamachine-readablecopy,representedinaformatwhosespecificationisavailabletothegeneralpublic,thatissuitableforrevisingthedocumentstraightforwardlywithgenerictexteditorsor (forimagescomposedofpixels)genericpaintprogramsor(fordrawings)somewidelyavailabledrawingeditor,andthatissuitableforinputtotextformattersorforautomatictranslationtoavarietyofformatssuitableforinputtotextformatters. AcopymadeinanotherwiseTransparentfileformatwhosemarkup,orabsenceofmarkup,hasbeenarrangedtothwartordiscouragesubsequentmodificationbyreadersisnotTransparent.AnimageformatisnotTransparentifusedforany substantialamountoftext.Acopythatisnot“Transparent”iscalled“Opaque”. ExamplesofsuitableformatsforTransparentcopiesincludeplainASCIIwithoutmarkup,Texinfoinputformat,LaTeXinputformat,SGMLorXMLusingapubliclyavailableDTD,andstandard-conformingsimpleHTML,PostScriptorPDF designedforhumanmodification.ExamplesoftransparentimageformatsincludePNG,XCFandJPG.Opaqueformatsincludeproprietaryformatsthatcanbereadandeditedonlybyproprietarywordprocessors,SGMLorXMLforwhichthe DTDand/orprocessingtoolsarenotgenerallyavailable,andthemachine-generatedHTML,PostScriptorPDFproducedbysomewordprocessorsforoutputpurposesonly. The“TitlePage”means,foraprintedbook,thetitlepageitself,plussuchfollowingpagesasareneededtohold,legibly,thematerialthisLicenserequirestoappearinthetitlepage.Forworksinformatswhichdonothaveanytitlepageas such,“TitlePage”meansthetextnearthemostprominentappearanceofthework’stitle,precedingthebeginningofthebodyofthetext. Asection“EntitledXYZ”meansanamedsubunitoftheDocumentwhosetitleeitherispreciselyXYZorcontainsXYZinparenthesesfollowingtextthattranslatesXYZinanotherlanguage.(HereXYZstandsforaspecificsectionname mentionedbelow,suchas“Acknowledgements”,“Dedications”,“Endorsements”,or“History”.)To“PreservetheTitle”ofsuchasectionwhenyoumodifytheDocumentmeansthatitremainsasection“EntitledXYZ”accordingtothisdefinition. TheDocumentmayincludeWarrantyDisclaimersnexttothenoticewhichstatesthatthisLicenseappliestotheDocument.TheseWarrantyDisclaimersareconsideredtobeincludedbyreferenceinthisLicense,butonlyasregards disclaimingwarranties:anyotherimplicationthattheseWarrantyDisclaimersmayhaveisvoidandhasnoeffectonthemeaningofthisLicense. 2. VERBATIMCOPYING YoumaycopyanddistributetheDocumentinanymedium,eithercommerciallyornoncommercially,providedthatthisLicense,thecopyrightnotices,andthelicensenoticesayingthisLicenseappliestotheDocumentarereproduced inallcopies,andthatyouaddnootherconditionswhatsoevertothoseofthisLicense.Youmaynotusetechnicalmeasurestoobstructorcontrolthereadingorfurthercopyingofthecopiesyoumakeordistribute.However,youmayaccept compensationinexchangeforcopies.Ifyoudistributealargeenoughnumberofcopiesyoumustalsofollowtheconditionsinsection3. Youmayalsolendcopies,underthesameconditionsstatedabove,andyoumaypubliclydisplaycopies. 3. COPYINGINQUANTITY Ifyoupublishprintedcopies(orcopiesinmediathatcommonlyhaveprintedcovers)oftheDocument,numberingmorethan100,andtheDocument’slicensenoticerequiresCoverTexts,youmustenclosethecopiesincoversthatcarry, clearlyandlegibly,alltheseCoverTexts:Front-CoverTextsonthefrontcover,andBack-CoverTextsonthebackcover.Bothcoversmustalsoclearlyandlegiblyidentifyyouasthepublisherofthesecopies.Thefrontcovermustpresentthefull titlewithallwordsofthetitleequallyprominentandvisible.Youmayaddothermaterialonthecoversinaddition.Copyingwithchangeslimitedtothecovers,aslongastheypreservethetitleoftheDocumentandsatisfytheseconditions,canbe treatedasverbatimcopyinginotherrespects. Iftherequiredtextsforeithercoveraretoovoluminoustofitlegibly,youshouldputthefirstoneslisted(asmanyasfitreasonably)ontheactualcover,andcontinuetherestontoadjacentpages. IfyoupublishordistributeOpaquecopiesoftheDocumentnumberingmorethan100,youmusteitherincludeamachine-readableTransparentcopyalongwitheachOpaquecopy,orstateinorwitheachOpaquecopyacomputer-network locationfromwhichthegeneralnetwork-usingpublichasaccesstodownloadusingpublic-standardnetworkprotocolsacompleteTransparentcopyoftheDocument,freeofaddedmaterial.Ifyouusethelatteroption,youmusttakereasonably prudentsteps,whenyoubegindistributionofOpaquecopiesinquantity,toensurethatthisTransparentcopywillremainthusaccessibleatthestatedlocationuntilatleastoneyearafterthelasttimeyoudistributeanOpaquecopy(directlyor throughyouragentsorretailers)ofthateditiontothepublic. Itisrequested,butnotrequired,thatyoucontacttheauthorsoftheDocumentwellbeforeredistributinganylargenumberofcopies,togivethemachancetoprovideyouwithanupdatedversionoftheDocument. 4. MODIFICATIONS YoumaycopyanddistributeaModifiedVersionoftheDocumentundertheconditionsofsections2and3above,providedthatyoureleasetheModifiedVersionunderpreciselythisLicense,withtheModifiedVersionfillingtheroleofthe Document,thuslicensingdistributionandmodificationoftheModifiedVersiontowhoeverpossessesacopyofit.Inaddition,youmustdothesethingsintheModifiedVersion: A. UseintheTitlePage(andonthecovers,ifany)atitledistinctfromthatoftheDocument,andfromthoseofpreviousversions(whichshould,iftherewereany,belistedintheHistorysectionoftheDocument).Youmayusethesame titleasapreviousversioniftheoriginalpublisherofthatversiongivespermission. B. ListontheTitlePage,asauthors,oneormorepersonsorentitiesresponsibleforauthorshipofthemodificationsintheModifiedVersion,togetherwithatleastfiveoftheprincipalauthorsoftheDocument(allofitsprincipalauthors, ifithasfewerthanfive),unlesstheyreleaseyoufromthisrequirement. C. StateontheTitlepagethenameofthepublisheroftheModifiedVersion,asthepublisher. iii iv D. PreserveallthecopyrightnoticesoftheDocument. E. Addanappropriatecopyrightnoticeforyourmodificationsadjacenttotheothercopyrightnotices. F. Include,immediatelyafterthecopyrightnotices,alicensenoticegivingthepublicpermissiontousetheModifiedVersionunderthetermsofthisLicense,intheformshownintheAddendumbelow. G. PreserveinthatlicensenoticethefulllistsofInvariantSectionsandrequiredCoverTextsgivenintheDocument’slicensenotice. H. IncludeanunalteredcopyofthisLicense. I. PreservethesectionEntitled“History”,PreserveitsTitle,andaddtoitanitemstatingatleastthetitle,year,newauthors,andpublisheroftheModifiedVersionasgivenontheTitlePage.IfthereisnosectionEntitled“History”inthe Document,createonestatingthetitle,year,authors,andpublisheroftheDocumentasgivenonitsTitlePage,thenaddanitemdescribingtheModifiedVersionasstatedintheprevioussentence. J. Preservethenetworklocation,ifany,givenintheDocumentforpublicaccesstoaTransparentcopyoftheDocument,andlikewisethenetworklocationsgivenintheDocumentforpreviousversionsitwasbasedon.Thesemaybe placedinthe“History”section.YoumayomitanetworklocationforaworkthatwaspublishedatleastfouryearsbeforetheDocumentitself,oriftheoriginalpublisheroftheversionitreferstogivespermission. K. ForanysectionEntitled“Acknowledgements”or“Dedications”,PreservetheTitleofthesection,andpreserveinthesectionallthesubstanceandtoneofeachofthecontributoracknowledgementsand/ordedicationsgiventherein. L. PreservealltheInvariantSectionsoftheDocument,unalteredintheirtextandintheirtitles.Sectionnumbersortheequivalentarenotconsideredpartofthesectiontitles. M. DeleteanysectionEntitled“Endorsements”.SuchasectionmaynotbeincludedintheModifiedVersion. N. DonotretitleanyexistingsectiontobeEntitled“Endorsements”ortoconflictintitlewithanyInvariantSection. O. PreserveanyWarrantyDisclaimers. IftheModifiedVersionincludesnewfront-mattersectionsorappendicesthatqualifyasSecondarySectionsandcontainnomaterialcopiedfromtheDocument,youmayatyouroptiondesignatesomeorallofthesesectionsasinvariant. Todothis,addtheirtitlestothelistofInvariantSectionsintheModifiedVersion’slicensenotice.Thesetitlesmustbedistinctfromanyothersectiontitles. YoumayaddasectionEntitled“Endorsements”,provideditcontainsnothingbutendorsementsofyourModifiedVersionbyvariousparties–forexample,statementsofpeerrevieworthatthetexthasbeenapprovedbyanorganizationas theauthoritativedefinitionofastandard. YoumayaddapassageofuptofivewordsasaFront-CoverText,andapassageofupto25wordsasaBack-CoverText,totheendofthelistofCoverTextsintheModifiedVersion.OnlyonepassageofFront-CoverTextandoneofBack-Cover Textmaybeaddedby(orthrougharrangementsmadeby)anyoneentity.IftheDocumentalreadyincludesacovertextforthesamecover,previouslyaddedbyyouorbyarrangementmadebythesameentityyouareactingonbehalfof,youmay notaddanother;butyoumayreplacetheoldone,onexplicitpermissionfromthepreviouspublisherthataddedtheoldone. Theauthor(s)andpublisher(s)oftheDocumentdonotbythisLicensegivepermissiontousetheirnamesforpublicityforortoassertorimplyendorsementofanyModifiedVersion. 5. COMBINING DOCUMENTS YoumaycombinetheDocumentwithotherdocumentsreleasedunderthisLicense,underthetermsdefinedinsection4aboveformodifiedversions,providedthatyouincludeinthecombinationalloftheInvariantSectionsofallofthe originaldocuments,unmodified,andlistthemallasInvariantSectionsofyourcombinedworkinitslicensenotice,andthatyoupreservealltheirWarrantyDisclaimers. ThecombinedworkneedonlycontainonecopyofthisLicense,andmultipleidenticalInvariantSectionsmaybereplacedwithasinglecopy.IftherearemultipleInvariantSectionswiththesamenamebutdifferentcontents,makethetitle ofeachsuchsectionuniquebyaddingattheendofit,inparentheses,thenameoftheoriginalauthororpublisherofthatsectionifknown,orelseauniquenumber.MakethesameadjustmenttothesectiontitlesinthelistofInvariantSectionsin thelicensenoticeofthecombinedwork. Inthecombination,youmustcombineanysectionsEntitled“History”inthevariousoriginaldocuments,formingonesectionEntitled“History”;likewisecombineanysectionsEntitled“Acknowledgements”,andanysectionsEntitled “Dedications”.YoumustdeleteallsectionsEntitled“Endorsements”. 6. COLLECTIONS OFDOCUMENTS YoumaymakeacollectionconsistingoftheDocumentandotherdocumentsreleasedunderthisLicense,andreplacetheindividualcopiesofthisLicenseinthevariousdocumentswithasinglecopythatisincludedinthecollection, providedthatyoufollowtherulesofthisLicenseforverbatimcopyingofeachofthedocumentsinallotherrespects. Youmayextractasingledocumentfromsuchacollection,anddistributeitindividuallyunderthisLicense,providedyouinsertacopyofthisLicenseintotheextracteddocument,andfollowthisLicenseinallotherrespectsregarding verbatimcopyingofthatdocument. 7. AGGREGATIONWITHINDEPENDENT WORKS AcompilationoftheDocumentoritsderivativeswithotherseparateandindependentdocumentsorworks,inoronavolumeofastorageordistributionmedium,iscalledan“aggregate”ifthecopyrightresultingfromthecompilation isnotusedtolimitthelegalrightsofthecompilation’susersbeyondwhattheindividualworkspermit.WhentheDocumentisincludedinanaggregate,thisLicensedoesnotapplytotheotherworksintheaggregatewhicharenotthemselves derivativeworksoftheDocument. IftheCoverTextrequirementofsection3isapplicabletothesecopiesoftheDocument,theniftheDocumentislessthanonehalfoftheentireaggregate,theDocument’sCoverTextsmaybeplacedoncoversthatbrackettheDocument withintheaggregate,ortheelectronicequivalentofcoversiftheDocumentisinelectronicform.Otherwisetheymustappearonprintedcoversthatbracketthewholeaggregate. 8. TRANSLATION Translationisconsideredakindofmodification,soyoumaydistributetranslationsoftheDocumentunderthetermsofsection4.ReplacingInvariantSectionswithtranslationsrequiresspecialpermissionfromtheircopyrightholders,but youmayincludetranslationsofsomeorallInvariantSectionsinadditiontotheoriginalversionsoftheseInvariantSections.YoumayincludeatranslationofthisLicense,andallthelicensenoticesintheDocument,andanyWarrantyDisclaimers, providedthatyoualsoincludetheoriginalEnglishversionofthisLicenseandtheoriginalversionsofthosenoticesanddisclaimers.IncaseofadisagreementbetweenthetranslationandtheoriginalversionofthisLicenseoranoticeordisclaimer, theoriginalversionwillprevail. IfasectionintheDocumentisEntitled“Acknowledgements”,“Dedications”,or“History”,therequirement(section4)toPreserveitsTitle(section1)willtypicallyrequirechangingtheactualtitle. 9. TERMINATION Youmaynotcopy,modify,sublicense,ordistributetheDocumentexceptasexpresslyprovidedforunderthisLicense.Anyotherattempttocopy,modify,sublicenseordistributetheDocumentisvoid,andwillautomaticallyterminateyour rightsunderthisLicense.However,partieswhohavereceivedcopies,orrights,fromyouunderthisLicensewillnothavetheirlicensesterminatedsolongassuchpartiesremaininfullcompliance. 10. FUTUREREVISIONS OFTHISLICENSE TheFreeSoftwareFoundationmaypublishnew,revisedversionsoftheGNUFreeDocumentationLicensefromtimetotime.Suchnewversionswillbesimilarinspirittothepresentversion,butmaydifferindetailtoaddressnewproblems orconcerns.Seehttp://www.gnu.org/copyleft/. EachversionoftheLicenseisgivenadistinguishingversionnumber.IftheDocumentspecifiesthataparticularnumberedversionofthisLicense“oranylaterversion”appliestoit,youhavetheoptionoffollowingthetermsandconditions eitherofthatspecifiedversionorofanylaterversionthathasbeenpublished(notasadraft)bytheFreeSoftwareFoundation.IftheDocumentdoesnotspecifyaversionnumberofthisLicense,youmaychooseanyversioneverpublished(notas adraft)bytheFreeSoftwareFoundation. Que a quien robe este libro, o lo tome prestado y no lo devuelva, se le convierta en una serpiente en las manosylovenza. Queseagolpeadopor laparálisisytodossus miembrosarruinados. Quelanguidezca dedolorgritandoporpiedad,yquenohayacotoasuagoníahastalaúltimadisolución. Quelaspolillas roansusentrañasy,cuandolleguealfinaldesucastigo,queardaenlasllamasdelInfiernoparasiempre. -MaldiciónanónimacontralosladronesdelibrosenelmonasteriodeSanPedro,Barcelona. Contents GNUFreeDocumentationLicense iii 1.APPLICABILITYANDDEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 2.VERBATIMCOPYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 3.COPYINGINQUANTITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 4.MODIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 5.COMBININGDOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 6.COLLECTIONSOFDOCUMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 7.AGGREGATIONWITHINDEPENDENTWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 8.TRANSLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 9.TERMINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 10.FUTUREREVISIONSOFTHISLICENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Preface viii 1 Preliminaries 1 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 NumericalFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 InjectiveandSurjectiveFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 AlgebraofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 InverseImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 InverseFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Countability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 GroupsandFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 AdditionandMultiplicationinR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 OrderAxioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6.1 AbsoluteValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7 ClassicalInequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.1 TriangleInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7.2 Bernoulli’sInequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.3 RearrangementInequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.7.4 ArithmeticMean-GeometricMeanInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.7.5 Cauchy-Bunyakovsky-SchwarzInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.7.6 Minkowski’sInequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.8 CompletenessAxiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.8.1 GreatestIntegerFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 v vi CONTENTS 2 TopologyofR 34 2.1 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2 DenseSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 OpenandClosedSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Interior,Boundary,andClosureofaSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 ConnectedSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6 CompactSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.7 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.8 LebesgueMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.9 TheCantorSet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Sequences 47 3.1 LimitofaSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 ConvergenceofSequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 ClassicalLimitsofSequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 AveragesofSequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5 OrdersofInfinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 CauchySequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.7 Topologyofsequences.LimitSuperiorandLimitInferior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4 Series 70 4.1 ConvergenceandDivergenceofSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 ConvergenceandDivergenceofSeriesofPositiveTerms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 SummationbyParts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 AlternatingSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5 AbsoluteConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 RealFunctionsofOneRealVariable 81 5.1 LimitsofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3 AlgebraicOperationswithContinuousFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4 MonotonicityandInverseImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.5 ConvexFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5.1 GraphsofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.6 ClassicalFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.1 AffineFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.2 QuadraticFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.3 PolynomialFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.4 ExponentialFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.5 LogarithmicFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.6 TrigonometricFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.6.7 InverseTrigonometricFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.7 ContinuityofSomeStandardFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.7.1 ContinuityPolynomialFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 CONTENTS vii 5.7.2 ContinuityoftheExponentialandLogarithmicFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.7.3 ContinuityofthePowerFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.8 InequalitiesObtainedbyContinuityArguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.9 IntermediateValueProperty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.10 VariationofaFunctionandUniformContinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.11 ClassicalLimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 DifferentiableFunctions 109 6.1 DerivativeataPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 DifferentiationRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3 Rolle’sTheoremandtheMeanValueTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.4 Extrema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.5 ConvexFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.6 InequalitiesObtainedThroughDifferentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.7 AsymptoticPreponderance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.8 AsymptoticEquivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.9 AsymptoticExpansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7 IntegrableFunctions 139 7.1 TheAreaProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.3 Riemann-StieltjesIntegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.4 Euler’sSummationFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8 SequencesandSeriesofFunctions 156 8.1 PointwiseConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.2 UniformConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.3 IntegralsandDerivativesofSequencesofFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.4 PowerSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.5 MaclaurinExpansionstoknowbyinspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.6 ComparisonTests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.7 TaylorPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.8 Abel’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 A AnswersandHints 159 AnswersandHints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Preface FormanyyearsIhavebeenluckyenoughtohavestudentsaskformore: morechallengingproblems,moreilluminating proofstodifferenttheorems,adeeperlookatvarioustopics,etc. TothosestudentsInormallyrecommendthebooksin thebibliography. Someofthesamestudentshavecomplainedofnotfindingthebooksorwantingtobuythem,butbeing impecunious,notbeingabletoaffordtobuythem.HenceIhavedecidedtomakethiscompilation. Herewetakeasemi-rigoroustourthroughCalculus. Wedon’tconstructtherealnumbers,butweexaminecloserthe realnumberaxiomsandsomeofthebasictheoremsofCalculus. WealsoconsidersomeOlympiad-levelproblemswhose solutioncanbeobtainedthroughCalculus. Thereaderisassumedtobefamiliarwithproofsusingmathematicalinduction,proofsbycontradiction,andtheme- chanicsofdifferentiationandintegration. DavidA.SANTOS [email protected] viii Chapter 1 Preliminaries Whybother? Wewill usethe languageofset theory throughout these notes. There arevariouselementary resultsthatpopupinlaterproofs,amongthem,theDeMorganLawsandtheMonotonicityReversingofCom- plementationRule. The conceptof a functionlies at thecoreofmathematics. Wewillgive abriefoverview hereof some basic propertiesoffunctions. 1.1 Sets Thissectioncontainssomeofthesetnotationtobeusedthroughoutthesenotes. Theone-directionalarrow reads =⇒ “implies”andthetwo-directionalarrow reads“ifandonlyif.” ⇐⇒ 1Definition Wewillacceptthenotionofsetasaprimitivenotion,thatis,anotionthatcannotbedefinedintermsofmore elementarynotions. Byasetwewillunderstandawell-definedcollectionofobjects,whichwewillcalltheelementsofthe set.IftheelementxbelongstothesetSwewillwritex S,andinthecontrarycasewewillwritex S.1 Thecardinalityof ∈ 6∈ asetisthenumberofelementsthesethas. Itcaneitherbefiniteorinfinite. WewilldenotethecardinalityofthesetS by card(S). + Somesetsareusedsooftenthatmeritspecialnotation.Wewilldenoteby N {0,1,2,3,...} = thesetofnaturalnumbers,by Z {..., 3, 2, 1,0,1,2,3,...}2 = − − − byQthesetofrationalnumbers3,byRtherealnumbers,andbyCthesetofcomplexnumbers.Wewilloccasionallyalsouse αZ {..., 3α, 2α, α,0,α,2α,3α,...},etc. = − − − Wewillalsodenotetheemptyset,thatis,thesethavingnoelementsby∅. 2Definition TheunionoftwosetsAandB istheset A B {x:(x A)or(x B)}. ∪ = ∈ ∈ Thisisread“AunionB.”Seefigure1.1.TheintersectionoftwosetsAandB is A B {x:(x A)and(x B)}. ∩ = ∈ ∈ 1GeorgCantor(1845-1918),thecreatorofsettheory,said“Asetisanycollectionintoawholeofdefinite,distinguishableobjects,calledelements,ofour intuitionorthought.” 2ZfortheGermanwordZählenmeaning“integer.” 3Qfor“quotients.” 1 Sets A B A B A B Figure1.1:A B Figure1.2:A B Figure1.3:A\B ∪ ∩ Thisisread“AintersectionB.”Seefigure1.2.ThesetdifferenceoftwosetsAandB is A\B {x:(x A)and(x B)}. = ∈ 6∈ Thisisread“AsetminusB.”Seefigure1.3. 3Definition TwosetsAandB aredisjointifA B ∅. ∩ = 4Example WriteA B asthedisjointunionofthreesets. ∪ Solution: Observethat A B (A\B) (A B) (B\A), ∪ = ∪ ∩ ∪ andthatthesetsonthedextralsidearedisjoint. 5Definition AsubsetB ofasetAisasubcollectionofA,andwedenotethisbyBjA.4 Thismeansthatx B x A. ∈ =⇒ ∈ + ∅andAarealwayssubsetsofanysetA. Observethat A B (A B) and (B A). = ⇐⇒ ⊆ ⊆ Weusethisobservationonthenexttheorem. 6THEOREM(DeMorganLaws) LetA,B,C besets.Then A\(B C) (A\B) (A\C), A\(B C) (A\B) (A\C). ∩ = ∪ ∪ = ∩ Proof: Wehave x A\(B C) x A and x (B or C) ∈ ∪ ⇐⇒ ∈ 6∈ (x A) and ((x B) and (x C)) ⇐⇒ ∈ 6∈ 6∈ (x A and x B) and (x A and x C) ⇐⇒ ∈ 6∈ ∈ 6∈ (x A\B) and (x A\C) ⇐⇒ ∈ ∈ x (A\B) (A\C). ⇐⇒ ∈ ∩ Also, x A\(B C) x A and x (B and C) ∈ ∩ ⇐⇒ ∈ 6∈ (x A) and ((x B) or (x C)) ⇐⇒ ∈ 6∈ 6∈ (x A and x B) or (x A and x C) ⇐⇒ ∈ 6∈ ∈ 6∈ (x A\B) or (x A\C) ⇐⇒ ∈ ∈ x (A\B) (A\C) ⇐⇒ ∈ ∪ q 4Thereseemsnottobeanagreementherebyauthors.Someusethenotation or insteadofj.Someseeinthenotation theexclusionofequality. ⊂ ⊆ ⊂ Inthesenotes,wewillalwaysusethenotationj,andifwewishedtoexcludeequalitywewillwrite . á 2

Description:
The purpose of this License is to make a manual, textbook, or other functional It complements the GNU General Public License, which is a copyleft license .. al final de su castigo, que arda en las llamas del Infierno para siempre.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.