ebook img

Calculus of variations and nonlinear partial differential equations: lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 27-July 2, 2005 PDF

213 Pages·2008·1.181 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus of variations and nonlinear partial differential equations: lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 27-July 2, 2005

Lecture Notes in Mathematics 1927 Editors: J.-M.Morel,Cachan F.Takens,Groningen B.Teissier,Paris C.I.M.E.meansCentroInternazionaleMatematicoEstivo,thatis,InternationalMathematicalSummer Center.Conceivedintheearlyfifties,itwasbornin1954andmadewelcomebytheworldmathematical communitywhereitremainsingoodhealthandspirit.Manymathematiciansfromallovertheworld havebeeninvolvedinawayoranotherinC.I.M.E.’sactivitiesduringthepastyears. SotheyalreadyknowwhattheC.I.M.E.isallabout.Forthebenefitoffuturepotentialusersandco- operatorsthemainpurposesandthefunctioningoftheCentremaybesummarizedasfollows:every year,duringthesummer,Sessions(threeorfourasarule)ondifferentthemesfrompureandapplied mathematicsareofferedbyapplicationtomathematiciansfromallcountries.Eachsessionisgenerally basedonthreeorfourmaincourses(24−30hoursoveraperiodof6-8workingdays)heldfromspe- cialistsofinternationalrenown,plusacertainnumberofseminars. AC.I.M.E.Session,therefore,isneitheraSymposium,norjustaSchool,butmaybeablendofboth. Theaimisthatofbringingtotheattentionofyoungerresearcherstheorigins,laterdevelopments,and perspectivesofsomebranchoflivemathematics. Thetopicsofthecoursesaregenerallyofinternationalresonanceandtheparticipationofthecourses covertheexpertiseofdifferentcountriesandcontinents.Suchcombination,gaveanexcellentopportu- nitytoyoungparticipantstobeacquaintedwiththemostadvanceresearchinthetopicsofthecourses andthepossibilityofaninterchangewiththeworldfamousspecialists.Thefullimmersionatmosphere ofthecoursesandthedailyexchangeamongparticipantsareafirstbuildingbrickintheedificeof internationalcollaborationinmathematicalresearch. C.I.M.E.Director C.I.M.E.Secretary PietroZECCA ElviraMASCOLO DipartimentodiEnergetica“S.Stecco” DipartimentodiMatematica UniversitàdiFirenze UniversitàdiFirenze ViaS.Marta,3 vialeG.B.Morgagni67/A 50139Florence 50134Florence Italy Italy e-mail:zecca@unifi.it e-mail:[email protected]fi.it FormoreinformationseeCIME’shomepage:http://www.cime.unifi.it CIME’sactivityissupportedby: – IstitutoNationalediAltaMathematica“F.Severi” – Ministerodell’Istruzione,dell’UniversitàedelleRicerca – MinisterodegliAffariEsteri,DirezioneGeneraleperlaPromozioneela Cooperazione,UfficioV ThisCIMEcoursewaspartiallysupportedby:HyKEaResearchTrainingNetwork(RTN)financedby theEuropeanUnioninthe5thFrameworkProgramme“ImprovingtheHumanPotential”(1HP).Project Reference:ContractNumber:HPRN-CT-2002-00282 Luigi Ambrosio · Luis Caffarelli Michael G. Crandall · Lawrence C. Evans Nicola Fusco Calculus of Variations and Nonlinear Partial Differential Equations Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy June 27–July 2, 2005 WithahistoricaloverviewbyElviraMascolo Editors:BernardDacorogna,PaoloMarcellini ABC LuigiAmbrosio LawrenceC.Evans ScuolaNormaleSuperiore DepartmentofMathematics PiazzadeiCavalieri7 UniversityofCalifornia 56126Pisa,Italy Berkeley,CA94720-3840,USA [email protected] [email protected] LuisCaffarelli NicolaFusco DepartmentofMathematics DipartimentodiMatematica UniversityofTexasatAustin UniversitàdegliStudidiNapoli 1UniversityStationC1200 ComplessoUniversitarioMonteS.Angelo Austin,TX78712-0257,USA ViaCintia [email protected] 80126Napoli,Italy MichaelG.Crandall [email protected] DepartmentofMathematics PaoloMarcellini UniversityofCalifornia SantaBarbara,CA93106,USA ElviraMascolo [email protected] DipartimentodiMatematica UniversitàdiFirenze BernardDacorogna VialeMorgagni67/A SectiondeMathématiques 50134Firenze,Italy EcolePolytechniqueFédérale [email protected]fi.it deLausanne(EPFL) [email protected]fi.it Station8 1015Lausanne,Switzerland bernard.dacorogna@epfl.ch ISBN978-3-540-75913-3 e-ISBN978-3-540-75914-0 DOI10.1007/978-3-540-75914-0 LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 LibraryofCongressControlNumber:2007937407 MathematicsSubjectClassification(2000):35Dxx,35Fxx,35Jxx,35Lxx,49Jxx (cid:1)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper 987654321 springer.com Preface WeorganizedthisCIMECoursewiththeaimtobringtogetheragroupoftop leadersonthefieldsofcalculusofvariations andnonlinearpartialdifferential equations.Thelistofspeakersandthetitlesoflectureshavebeenthefollowing: - LuigiAmbrosio,Transport equation and Cauchy problem for non-smooth vectorfields. - LuisA.Caffarelli,Homogenizationmethodsfornondivergenceequations. - Michael Crandall, The infinity-Laplace equation and elements of the cal- culusofvariationsinL-infinity. - GianniDalMaso,Rate-independentevolutionproblemsinelasto-plasticity: avariationalapproach. - LawrenceC.Evans,WeakKAMtheoryandpartialdifferentialequations. - NicolaFusco,Geometricalaspectsofsymmetrization. IntheoriginallistofinvitedspeakersthenameofPierreLouisLionswas alsoincluded,buthe,attheverylastmoment,couldnotparticipate. TheCourse,justlookingatthenumberofparticipants(morethan140,one ofthelargestinthehistoryoftheCIMEcourses),wasagreatsuccess;mostof themwereyoungresearchers,someotherswerewellknownmathematicians, experts in the field. The high level of the Course is clearly proved by the qualityofnotesthatthespeakerspresentedforthisSpringerLectureNotes. WealsoinvitedElviraMascolo,theCIMEscientificsecretary,towritein thepresentbookanoverviewofthehistoryofCIME(whichshepresentedat Cetraro)withspecialemphasisincalculusofvariationsandpartialdifferential equations. Most of the speakers are among the world leaders in the field of viscos- ity solutions ofpartialdifferentialequations,inparticularnonlinearpde’sof implicit type. Our choice has not been random; in fact we and other mathe- maticians have recently pointed out a theory of almost everywhere solutions of pde’s of implicit type, which is an approach to solve nonlinear systems of pde’s.ThusthisCoursehasbeenanopportunitytobringtogetherexpertsof viscositysolutionsandtoseesomerecentdevelopmentsinthefield. VI Preface WebrieflydescribeherethearticlespresentedinthisLectureNotes. Starting from the lecture by Luigi Ambrosio, where the author studies thewell-posednessoftheCauchyproblemforthehomogeneous conservative continuityequation d µ +D ·(bµ)=0, (t,x)∈I×Rd dt t x t andforthetransportequation d w +b·∇w =c , dt t t t whereb(t,x)=b(x)isagiventime-dependentvectorfieldinRd.Theinter- t esting case is when b(·) is not necessarily Lipschitz and has, for instance, a t SobolevorBV regularity.Vectorfieldswiththis“low”regularityshowup,for instance,inseveralPDE’sdescribingthemotionoffluids,andinthetheory ofconservationlaws. ThelectureofLuisCaffarelligaverisetoajointpaperwithLuisSilvestre; wequotefromtheirintroduction: “Whenwelookatadifferentialequationinaveryirregularmedia(com- posite material, mixed solutions, etc.) from very close, we may see a very complicatedproblem.However,ifwelookfromfarawaywemaynotseethe detailsandtheproblemmaylooksimpler.Thestudyofthiseffectinpartial differential equations isknown ashomogenization. Theeffectof theinhomo- geneities oscillating at small scales is often not a simple average and may be hard to predict: a geodesic in an irregular medium will try to avoid the badareas,theroughnessofasurfacemayaffectinnontrivialwaytheshapes of drops laying on it, etc... The purpose of these notes is to discuss three problemsinhomogenizationandtheirinterplay. In the first problem, we consider the homogenization of a free boundary problem.Westudytheshapeofadroplyingonaroughsurface.Wediscuss in what case the homogenization limit converges to a perfectly round drop. It is taken mostly from the joint work with Antoine Mellet (see the precise referencesinthearticlebyCaffarelliandSilvestreinthislecturenotes).The secondproblemconcernstheconstructionofplanelikesolutionstothemini- malsurfaceequationinperiodicmedia.Thisisrelatedtohomogenizationof minimalsurfaces.ThedetailscanbefoundinthejointpaperwithRafaelde la Llave. The third problem concerns existence of homogenization limits for solutions to fully nonlinear equations in ergodic random media. It is mainly basedonthejointpaperwithPanagiotisSouganidisandLiheWang. We will try to point out the main techniques and the common aspects. Thefocushasbeensettothebasicideas.Themainpurposeistomakethis advancedtopicsasreadableaspossible.” Michael Crandall presents in his lecture an outline of the theory of the archetypalL∞variationalprobleminthecalculusofvariations.Namely,given Preface VII an open U ⊂ Rn and b ∈ C(∂U), find u ∈ C(U) which agrees with the boundaryfunctionbon∂U andminimizes F∞(u,U):=(cid:4)|Du|(cid:4)L∞(U) amongallsuchfunctions.Here|Du|istheEuclideanlengthofthegradientDu ofu.Heisalsointerestedinthe“Lipschitzconstant”functionalaswell:ifK isanysubsetofRn andu:K→R,itsleastLipschitzconstantisdenotedby Lip(u,K):=inf{L∈R: |u(x)−u(y)|≤L|x−y|,∀x,y∈K}. OnehasF∞(u,U)=Lip(u,U) ifU is convex,butequality does nothold in general. TheauthorshowsthatafunctionwhichisabsolutelyminimizingforLip is also absolutely minimizing for F∞ and conversely. It turns out that the absolutely minimizing functions for Lip and F∞ are precisely the viscosity solutionsofthefamouspartialdifferentialequation (cid:1)n ∆∞u = uxiuxjuxixj =0. i,j=1 The operator ∆∞ is called the “∞-Laplacian” and “viscosity solutions” of theaboveequationaresaidtobe∞−harmonic. InhislectureLawrenceC.EvansintroducessomenewPDEmethodsde- veloped over the past 6 years in so-called “weak KAM theory”, a subject pioneeredbyJ.MatherandA.Fathi.Succinctlyput,thegoalofthissubject istheemployingofdynamicalsystems,variationalandPDEmethodstofind “integrablestructures”withingeneralHamiltoniandynamics.Mainreferences (see the precise references in the article by Evans in this lecture notes) are Fathi’sforthcomingbookandanarticlebyEvansandGomes. Nicola Fusco in his lecture presented in this book considers two model functionals: the perimeter of a set E in Rn and the Dirichlet integral of a scalar function u. It is well known that on replacing E or u by its Steiner symmetral oritssphericalsymmetrization,respectively,boththesequantities decrease. This fact is classical when E is a smooth open set and u is a C1 function. On approximating a set of finite perimeter with smooth open sets oraSobolevfunctionbyC1 functions,theseinequalitiescanbeextendedby lowersemicontinuitytothegeneralsetting.However,anapproximationargu- mentgivesnoinformationabouttheequalitycase.Thus,ifoneisinterested in understanding when equality occurs, one has to carry on a deeper analy- sis,basedonfinepropertiesofsetsoffiniteperimeterandSobolevfunctions. Briefly,thisisthesubjectofFusco’slecture. Finally, as an appendix to this CIME Lecture Notes, as we said Elvira Mascolo, the CIME scientific secretary, wrote an interesting overview of the historyofCIMEhavinginmindinparticularcalculusofvariationsandPDES. VIII Preface Wearepleasedtoexpressourappreciationtothespeakersfortheirexcel- lentlecturesandtotheparticipantsforcontributingtothesuccessoftheSum- merSchool.WehadatCetraroaninteresting,rich,nice,friendlyatmosphere, created by the speakers, the participants and by the CIME organizers; also for this reason we like to thank the Scientific Committee of CIME, and in particular Pietro Zecca (CIME Director) and Elvira Mascolo (CIME Secre- tary). We also thank Carla Dionisi, Irene Benedetti and Francesco Mugelli, whotookcareofthedaytodayorganizationwithgreatefficiency. BernardDacorognaand PaoloMarcellini Contents Transport Equation and Cauchy Problem for Non-Smooth Vector Fields LuigiAmbrosio .................................................. 1 1 Introduction.................................................. 1 2 TransportEquationandContinuityEquation withintheCauchy-LipschitzFramework.......................... 4 3 ODEUniquenessversusPDEUniqueness......................... 8 4 VectorFieldswithaSobolevSpatialRegularity ................... 19 5 VectorFieldswithaBV SpatialRegularity....................... 27 6 Applications.................................................. 31 7 OpenProblems,BibliographicalNotes,andReferences ............ 34 References ...................................................... 37 Issues in Homogenization for Problems with Non Divergence Structure LuisCaffarelli,LuisSilvestre...................................... 43 1 Introduction.................................................. 43 2 HomogenizationofaFreeBoundaryProblem:CapillaryDrops ...... 44 2.1 ExistenceofaMinimizer ................................... 46 2.2 PositiveDensityLemmas................................... 47 2.3 MeasureoftheFreeBoundary .............................. 51 2.4 Limitasε→0............................................ 53 2.5 Hysteresis ................................................ 54 2.6 References................................................ 57 3 The Construction of Plane Like Solutions to Periodic Minimal SurfaceEquations ............................................. 57 3.1 References................................................ 64 4 ExistenceofHomogenizationLimitsforFullyNonlinearEquations... 65 4.1 MainIdeasoftheProof.................................... 67 4.2 References................................................ 73 References ...................................................... 74

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.