ebook img

Calculus For Biology and Medicine: Pearson New International Edition PDF

707 Pages·2013·21.543 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus For Biology and Medicine: Pearson New International Edition

C a l c u l u s f o r B i o l o g y a n d M e d i c i n e N e u h a u s e r T h i r d E d i t i o n Calculus for Biology and Medicine ISBN 978-1-29202-226-0 Claudia Neuhauser Third Edition 9 781292 022260 Calculus for Biology and Medicine Claudia Neuhauser Third Edition ISBN 10: 1-292-02226-4 ISBN 13: 978-1-292-02226-0 Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk © Pearson Education Limited 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS. All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affi liation with or endorsement of this book by such owners. ISBN 10: 1-292-02226-4 ISBN 13: 978-1-292-02226-0 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Printed in the United States of America 12233455666693072930866612267145812321 P E A R S O N C U S T O M L I B R AR Y Table of Contents Chapter 1. Preview and Review Claudia Neuhauser 1 Chapter 2. Discrete Time Models, Sequences, and Difference Equations Claudia Neuhauser 62 Chapter 3. Limits and Continuity Claudia Neuhauser 91 Chapter 4. Differentiation Claudia Neuhauser 132 Chapter 5. Applications of Differentiation Claudia Neuhauser 202 Chapter 6. Integration Claudia Neuhauser 276 Chapter 7. Integration Techniques and Computational Methods Claudia Neuhauser 327 Chapter 8. Differential Equations Claudia Neuhauser 391 Chapter 9. Linear Algebra and Analytic Geometry Claudia Neuhauser 434 Chapter 10. Multivariable Calculus Claudia Neuhauser 505 Chapter 11. Systems of Differential Equations Claudia Neuhauser 588 Appendix A Frequently Used Symbols Claudia Neuhauser 661 Appendix B Table of the Standard Normal Distribution Claudia Neuhauser 662 Answers to Odd-Numbered Problems Claudia Neuhauser 663 I 666689997157 References Claudia Neuhauser 687 Contributors to Calculus Claudia Neuhauser 691 Derivatives and Integrals Claudia Neuhauser 695 Index 697 II 1 Preview and Review LEARNING OBJECTIVES Thefirsttwosectionsofthischapterserveasareviewofalgebra,trigonometry,andprecalculus, materialneededtomasterthetopicscoveredinthisbook.Section1.3reviewsgraphingfunctions andintroducestheimportantconceptoftransformingfunctionsintolinearfunctions.Thesection includesasubsectiononvisualizingverbaldescriptionsofbiologicalphenomena. A Brief Overview of Calculus IsaacNewton(1642–1727)andGottfriedWilhelmLeibniz(1646–1716)aretypically creditedwiththeinventionofcalculusandwerethefirsttodevelopthesubjectsys- tematically. Calculushastwoparts:differentialandintegralcalculus.Historically,differential calculus was concerned with finding lines tangent to curves and with calculating ex- trema(i.e.,maximaandminima)ofcurves.Integralcalculushasitsrootsinattempting to determine the areas of regions bounded by curves or in finding the volumes of solids.Thetwopartsofcalculusarecloselyrelated:Thebasicoperationofonecanbe consideredtheinverseoftheother.Thisresultisknownasthefundamentaltheorem ofcalculusandgoesbacktoNewtonandLeibniz,whowerethefirsttounderstandits meaningandtoputittouseinsolvingdifficultproblems. Findingtangents,locatingextrema,andcalculatingareasarebasicgeometricprob- lems,anditmaybesomewhatsurprisingthattheirsolutionledtothedevelopmentof methods that are useful in a wide range of scientific fields. The main reason for this historical development is that the slope of a tangent line at a given point is related to how quickly the function changes at that point. Knowing how quickly a function changesatapointopensupthepossibilityofadynamicdescriptionofbiology,suchas adescriptionofpopulationgrowth,thespeedatwhichachemicalreactionproceeds, thefiringrateofneurons,andthespeedatwhichaninvasivespeciesinvadesanew habitat.Forthisreason,calculushasbeenoneofthemostpowerfultoolsinthemath- ematicalformulationofscientificconcepts.Applicationsofcalculusarenotrestricted tobiology,however;infact,physicswasthedrivingforceintheoriginaldevelopment of calculus. In this text we will be concerned primarily with how calculus is used in biology. Inadditiontodevelopingthetheoryofdifferentialandintegralcalculus,wewill considermanyexamplesinwhichcalculusisusedtodescribeormodelsituationsin the biological sciences. The use of quantitative reasoning is becoming increasingly moreimportantinbiology—forinstance,inmodelinginteractionsamongspeciesin acommunity,describingtheactivitiesofneurons,explaininggeneticdiversityinpop- ulations,andpredictingtheimpactofglobalwarmingonvegetation.Today,calculus (Chapters2–11)andprobabilityandstatistics(Chapter12)areamongthemostim- portantquantitativetoolsofabiologist. From Calculus for Biology and Medicine, Third Edition. Claudia Neuhauser. Copyright © 2011 by Pearson Education, Inc. All rights reserved. 1 2 Chapter 1 Preview and Review 1.1 Preliminaries Thissectionreviewssomeoftheconceptsandtechniquesfromalgebraandtrigonom- etrythatarefrequentlyusedincalculus.Theproblemsattheendofthesectionwill helpyoureacquaintyourselfwiththismaterial. 1.1.1 The Real Numbers Therealnumberscanmosteasilybevisualizedonthereal-numberline(seeFigure a b 1.1),onwhichnumbersareorderedsothatifa < b,thena istotheleftofb.Sets (cid:2)5(cid:2)4(cid:2)3(cid:2)2(cid:2)1 0 1 2 3 4 5 (collections)ofrealnumbersaretypicallydenotedbythecapitalletters A, B,C,etc. Todescribetheset A,wewrite Figure1.1 Thereal-numberline. A x condition ={ : } where“condition”tellsuswhichnumbersareintheset A.Themostimportantsets incalculusareintervals.Weusethefollowingnotations:Ifa <b,then theopeninterval(a,b) x a < x <b ={ : } and theclosedinterval a,b x a x b [ ]={ : ≤ ≤ } Wealsousehalf-openintervals: a,b) x a x <b and (a,b x a < x b [ ={ : ≤ } ]={ : ≤ } Unboundedintervalsaresetsoftheform x x >a .Herearethepossiblecases: { : } a, ) x x a [ ∞ ={ : ≥ } ( ,a x x a −∞ ]={ : ≤ } (a, ) x x >a ∞ ={ : } ( ,a) x x <a −∞ ={ : } Thesymbols“ ”and“ ”mean“plusinfinity”and“minusinfinity,”respectively. ∞ −∞ Thesesymbolsarenotrealnumbers,butareusedmerelyfornotationalconvenience. Thereal-numberline,denotedbyR,doesnothaveendpoints,andwecanwriteRin thefollowingequivalentforms: R x < x < ( , ) ={ :−∞ ∞}= −∞ ∞ Thelocationofthenumber0onthereal-numberlineiscalledtheorigin,andwe canmeasurethedistanceofthenumberx totheorigin.Forinstance, 5is5unitsto − theleftoftheorigin.Aconvenientnotationformeasuringdistancesfromtheorigin onthereal-numberlineistheabsolutevalueofarealnumber. Definition Theabsolutevalueofarealnumbera,denotedby a ,is | | a ifa 0 a ≥ | |=(cid:2) a ifa <0 − Forexample, 7 ( 7) 7.Wecanuseabsolutevaluestofindthedistance |− | = − − = betweenanytwonumbersx andx asfollows: 1 2 distancebetweenx andx x x 1 2 1 2 =| − | Notethat x x x x .Tofindthedistancebetween 2and4,wecompute 1 2 2 1 2 4 | − 6|=6|,or−4 | ( 2) 4 2 6. − |− − |=|− |= | − − |=| + |= 2 1.1 Preliminaries 3 Wewillfrequentlyneedtosolveequationscontainingabsolutevalues,forwhich thefollowingpropertyisuseful: Letb 0.Then ≥ 1. Fora 0, a bisequivalenttoa b. ≥ | |= = 2. Fora <0, a bisequivalentto a b. | |= − = EXAMPLE1 Solve x 4 2. | − |= Solution If x 4 0,then x 4 2andthus x 6.If x 4 < 0,then (x 4) 2and − ≥ − = = − − − = thus x 2.Thesolutions,illustratedgraphicallyinFigure1.2,aretherefore x 6 = = and x 2. The points of intersection of y x 4 and y 2 are at x 6 and = = | − | = = x 2.Solving x 4 2canalsobeinterpretedasfindingthetwonumbersthat = | − | = havedistance2from4. y 6 (cid:2)x (cid:2) 4(cid:2) 2 5 4 3 1 (cid:2)1 1 2 3 4 5 6 7 x (cid:2)1 Figure1.2 Thegraphofy x 4 andy 2.Thepoints =| − | = ofintersectionareatx 6andx 2. = = We write the solution of an equation of the form a b as either a b or | | = | | = a b,illustratedinthenextexample. =− EXAMPLE2 Solve 3x 1 1x 1. |2 − |=|2 + | Solution Either 3 1 x 1 x 1 2 − =− 2 + (cid:3) (cid:4) 3 1 x 1 x 1 3 1 2 − = 2 + x 1 x 1 or 2 − =−2 − x 2 = 2x 0 = x 0 = AgraphicalsolutionofthisexampleisshowninFigure1.3. Returning to Example 1, where we found the two points whose distance from 4 was equal to 2, we can also try to find those points whose distance from 4 is less than (or greater than) 2. This amounts to solving inequalities with absolute values. LookingbackatFigure1.2,weseethatthesetofx-valueswhosedistancefrom4is lessthan2(i.e., x 4 <2)istheinterval(2,6).Similarly,thesetofx-valueswhose distancefrom4|is−grea|terthan2(i.e., x 4 > 2)istheunionofthetwointervals ( ,2)and(6, ),or( ,2) (6,| −). | −∞ ∞ −∞ ∪ ∞ 3 4 Chapter 1 Preview and Review y 6 5 4 3 2 (cid:2)3x (cid:2) 1(cid:2) 2 1 (cid:2)1x (cid:3) 1(cid:2) 2 (cid:2)4 (cid:2)2 2 4 x (cid:2)1 Figure1.3 Thegraphsofy 3x 1 andy 1x 1. =|2 − | =|2 + | Thepointsofintersectionareatx 0andx 2. = = Ingeneral,tosolveabsolute-valueinequalities,thefollowingtwopropertiesare useful: Letb >0.Then 1. a <bisequivalentto b <a <b. | | − 2. a >bisequivalenttoa >bora < b. | | − EXAMPLE3 (a) Solve 2x 5 <3. (b) Solve 4 3x 2. | − | | − |≥ Solution (a) Werewrite 2x 5 <3as | − | 3<2x 5<3 − − Adding5toallthreeparts,weobtain 2<2x <8 Dividingtheresultby2,wefindthat 1< x <4 Thesolutionisthereforetheset x 1 < x < 4 .Inintervalnotation,thesolution canbewrittenastheopeninterva{l(:1,4). } (b) Tosolve 4 3x 2,wegothroughthefollowingsteps: | − |≥ 4 3x 2 − ≥ 4 3x 2 3x 2 − ≤− − ≥− or 3x 6 2 − ≤− x x 2 ≤ 3 ≥ Thesolutionistheset x x 2orx 2 ,or,inintervalnotation,( ,2 2, ). { : ≥ ≤ 3} −∞ 3]∪[ ∞ 1.1.2 Lines in the Plane Wewillfrequentlyencountersituationsinwhichtherelationshipbetweenquantities canbedescribedbyalinearequation.Forexample,whenaweightisattachedtoa helical spring made of some elastic material (and the weight is not too heavy), the relationshipbetweenthelength y ofthespringandtheweightx is y y kx (1.1) 0 = + where y denotesthelengthofthespringwhennoweightisattachedtoitandk isa 0 positiveconstant.Equation(1.1)isanexampleofalinearequation,andwesaythat x and y satisfyalinearequation. 4 1.1 Preliminaries 5 y Thestandardformofalinearequationisgivenby Ax By C 0 + + = (x, y) 2 2 where A,B,andCareconstants, AandBarenotbothequalto0,andxandyarethe y (cid:2) y twovariables.Inalgebra,youlearnedthatthegraphofalinearequationisastraight 2 1 (x1, y1) line. Ifthetwopoints(x ,y )and(x ,y )lieonastraightline,thentheslopeofthe 1 1 2 2 x (cid:2) x 2 1 lineis y y m 2− 1 = x x 2 1 − x (SeeFigure1.4.)Twopoints(oronepointandtheslope)aresufficienttodetermine Figure1.4 Theslopeofastraight theequationofastraightline. line. Ifyouaregivenonepointandtheslope,youcanusethepoint–slopeformofa straightlinetowriteitsequation,givenby y y m(x x ) 0 0 − = − wheremistheslopeand(x ,y )isapointontheline.Ifyouaregiventwopoints,first 0 0 computetheslopeandthenuseoneofthepointsandtheslopetofindtheequation ofthestraightlineinpoint–slopeform. Lastly,themostfrequentlyusedformofalinearequationistheslope–intercept form y mx b = + wheremistheslopeandbisthey-intercept,whichisthepointofintersectionofthe linewiththe y-axis;the y-intercepthascoordinates(0,b). Wesummarizethesethreeformsoflinearequationsinthefollowingbox: Ax By C 0 (StandardForm) y +y m+(x =x ) (Point–SlopeForm) 0 0 − = − y mx b (Slope–InterceptForm) = + EXAMPLE4 Determine,inslope–interceptform,theequationofthelinepassingthrough( 2,1) − and(3, 1). −2 Solution Theslopeofthelineis y m y2−y1 −12 −1 −32 3 x (cid:4) h = x x = 3 ( 2) = 5 =−10 2 1 − − − Usingthepoint–slopeformwith( 2,1),wefindthat − 3 k y 1 (x ( 2)) − =−10 − − y (cid:4) k or,inslope–interceptform, 3 2 h x y x =−10 + 5 Wecouldhaveusedtheotherpoint,(3, 1),andobtainedthesameresult. Figure1.5 Thehorizontalliney k −2 andtheverticallinex h. = WenowrecalltwospecialcasesthatweillustrateinFigure1.5: = y k horizontalline(slope0) = x h verticalline(slopeundefined) = 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.