ebook img

Calculus - Early Transcendentals (International Student Version) PDF

1316 Pages·2013·21.602 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus - Early Transcendentals (International Student Version)

January2,2012 19:18 flast Sheetnumber3 Pagenumberxx cyanmagentayellowblack October 15, 2011 13:09 fmend Sheet number 1 Page number 2 cyan magenta yellow black GEOMETRY FORMULAS A=area, S=lateralsurfacearea, V =volume, h=height, B=areaofbase, r=radius, l=slantheight, C=circumference, s=arclength Parallelogram Triangle Trapezoid Circle Sector a r h h h s u b b b r A = 1 r2u, s = ru A = bh A = 1 bh A = 1 (a + b)h A = pr2, C = 2pr 2 2 2 (u in radians) Right Circular Cylinder Right Circular Cone Any Cylinder or Prism with Parallel Bases Sphere h l h h r h r r B B V = pr2h, S = 2prh V = 1 pr2h, S = prl V = Bh V = 4 pr3, S = 4pr2 3 3 ALGEBRA FORMULAS THEQUADRATIC FORMULA THEBINOMIALFORMULA Teqhueastioolnutaioxn2s+ofbtxhe+quca=dra0tiacre (x+y)n=xn+nxn−1y+n(1n·−21)xn−2y2+n(n−1·12)(·n3−2)xn−3y3+···+nxyn−1+yn √ x= −b± b2−4ac (x−y)n=xn−nxn−1y+n(n−1)xn−2y2−n(n−1)(n−2)xn−3y3+···±nxyn−1∓yn 2a 1·2 1·2·3 TABLE OF INTEGRALS BASICFUNCTIONS (cid:2) (cid:2) un+1 au 1. undu= +C 10. audu= +C n+1 lna (cid:2) (cid:2) du 2. =ln|u|+C 11. lnudu=ulnu−u+C u (cid:2) (cid:2) 3. eudu=eu+C 12. cotudu=ln|sinu|+C (cid:2) (cid:2) 4. sinudu=−cosu+C secudu=ln|secu+tanu|+C 13. (cid:4) (cid:5) (cid:2) =ln|tan 1π+1u |+C 5. cosudu=sinu+C (cid:2) 4 2 (cid:2) cscudu=ln|cscu−cotu|+C 14. 6. tanudu=ln|secu|+C =ln|tan1u|+C (cid:2) (cid:3) (cid:2) 2 (cid:3) 7. sin−1udu=usin−1u+ 1−u2+C 15. cot−1udu=ucot−1u+ln 1+u2+C (cid:2) (cid:3) (cid:2) (cid:3) 8. cos−1udu=ucos−1u− 1−u2+C 16. sec−1udu=usec−1u−ln|u+ u2−1|+C (cid:2) (cid:3) (cid:2) (cid:3) 9. tan−1udu=utan−1u−ln 1+u2+C 17. csc−1udu=ucsc−1u+ln|u+ u2−1|+C October 15, 2011 13:09 fmend Sheet number 2 Page number 3 cyan magenta yellow black RECIPROCALSOFBASICFUNCTIONS (cid:2) (cid:2) 1 1 18. du=tanu∓secu+C 22. du= 1(u∓ln|sinu±cosu|)+C (cid:2) 1±sinu (cid:2) 1±cotu 2 1 1 19. du=−cotu±cscu+C 23. du=u+cotu∓cscu+C (cid:2) 1±cosu (cid:2) 1±secu 1 1 20. du= 1(u±ln|cosu±sinu|)+C 24. du=u−tanu±secu+C (cid:2) 1±tanu 2 (cid:2) 1±cscu 1 1 21. du=ln|tanu|+C 25. du=u−ln(1±eu)+C sinucosu 1±eu POWERSOFTRIGONOMETRICFUNCTIONS (cid:2) (cid:2) 26. sin2udu= 1u−1sin2u+C 32. cot2udu=−cotu−u+C (cid:2) 2 4 (cid:2) 27. cos2udu= 1u+1sin2u+C 33. sec2udu=tanu+C (cid:2) 2 4 (cid:2) 28. tan2udu=tanu−u+C 34. csc2udu=−cotu+C (cid:2) (cid:2) (cid:2) (cid:2) 29. sinnudu=−1sinn−1ucosu+n−1 sinn−2udu 35. cotnudu=− 1 cotn−1u− cotn−2udu (cid:2) n n (cid:2) (cid:2) n−1 (cid:2) 30. cosnudu= 1cosn−1usinu+n−1 cosn−2udu 36. secnudu= 1 secn−2utanu+n−2 secn−2udu (cid:2) n (cid:2) n (cid:2) n−1 n−1 (cid:2) 31. tannudu= 1 tann−1u− tann−2udu 37. cscnudu=− 1 cscn−2ucotu+n−2 cscn−2udu n−1 n−1 n−1 PRODUCTSOFTRIGONOMETRICFUNCTIONS (cid:2) (cid:2) sin(m+n)u sin(m−n)u cos(m+n)u cos(m−n)u 38. sinmusinnudu=− + +C 40. sinmucosnudu=− − +C (cid:2) 2(m+n) 2(m−n) (cid:2) 2(m+n) 2(m−n)(cid:2) 39. cosmucosnudu= si2n((mm++nn))u+si2n((mm−−nn))u+C 41. sinmucosnudu=−sinm−m1u+consn+1u+mm+−n1 sinm−2ucosnudu (cid:2) = sinm+1ucosn−1u+ n−1 sinmucosn−2udu m+n m+n PRODUCTSOFTRIGONOMETRICANDEXPONENTIALFUNCTIONS (cid:2) (cid:2) eau eau 42. eausinbudu= (asinbu−bcosbu)+C 43. eaucosbudu= (acosbu+bsinbu)+C a2+b2 a2+b2 POWERSOFu MULTIPLYINGORDIVIDINGBASICFUNCTIONS (cid:2) (cid:2) 44. usinudu=sinu−ucosu+C 51. ueudu=eu(u−1)+C (cid:2) (cid:2) (cid:2) 45. ucosudu=cosu+usinu+C 52. uneudu=uneu−n un−1eudu (cid:2) (cid:2) (cid:2) 46. u2sinudu=2usinu+(2−u2)cosu+C 53. unaudu= unau − n un−1audu+C (cid:2) (cid:2) lna lna (cid:2) 47. u2cosudu=2ucosu+(u2−2)sinu+C 54. eudu =− eu + 1 eudu (cid:2) (cid:2) (cid:2) un (n−1)un−1 n−1 (cid:2) un−1 48. unsinudu=−uncosu+n un−1cosudu 55. audu =− au + lna audu (cid:2) (cid:2) (cid:2) un (n−1)un−1 n−1 un−1 49. uncosudu=unsinu−n un−1sinudu 56. du =ln|lnu|+C (cid:2) ulnu un+1 50. unlnudu= [(n+1)lnu−1]+C (n+1)2 POLYNOMIALSMULTIPLYINGBASICFUNCTIONS (cid:2) 57. p(u)eaudu= 1p(u)eau− 1 p(cid:4)(u)eau+ 1 p(cid:4)(cid:4)(u)eau−··· [signsalternate:+−+−···] (cid:2) a a2 a3 58. p(u)sinaudu=−1p(u)cosau+ 1 p(cid:4)(u)sinau+ 1 p(cid:4)(cid:4)(u)cosau−··· [signsalternateinpairsafterfirstterm:++−−++−−···] (cid:2) a a2 a3 59. p(u)cosaudu= 1p(u)sinau+ 1 p(cid:4)(u)cosau− 1 p(cid:4)(cid:4)(u)sinau−··· [signsalternateinpairs:++−−++−−···] a a2 a3 February17,2012 13:03 ffirs Sheetnumber3 Pagenumberiii cyanmagentayellowblack 10 th EDITION CALCULUS EARLY TRANSCENDENTALS International Student Version HOWARD ANTON DrexelUniversity IRL BIVENS DavidsonCollege STEPHEN DAVIS DavidsonCollege JOHN WILEY & SONS, INC. February17,2012 13:03 ffirs Sheetnumber4 Pagenumberiv cyanmagentayellowblack Copyright©2013JohnWiley&SonsSingaporePte.Ltd. Coverimagefrom©Chernetskiy/Shutterstock ContributingSubjectMatterExpert:AnnK.Ostberg Foundedin1807,JohnWiley&Sons,Inc. hasbeenavaluedsourceofknowledgeandunderstandingformore than200years,helpingpeoplearoundtheworldmeettheirneedsandfulfilltheiraspirations. Ourcompanyis builtonafoundationofprinciplesthatincluderesponsibilitytothecommunitiesweserveandwhereweliveand work.In2008,welaunchedaCorporateCitizenshipInitiative,aglobalefforttoaddresstheenvironmental,social, economic,andethicalchallengeswefaceinourbusiness.Amongtheissuesweareaddressingarecarbonimpact, paperspecificationsandprocurement,ethicalconductwithinourbusinessandamongourvendors,andcommunity andcharitablesupport.Formoreinformation,pleasevisitourwebsite:www.wiley.com/go/citizenship. Allrightsreserved.ThisbookisauthorizedforsaleinEurope,Asia,AfricaandtheMiddleEastonlyandmaynot beexportedoutsideoftheseterritories. Exportationfromorimportationofthisbooktoanotherregionwithout thePublisher’sauthorizationisillegalandisaviolationofthePublisher’srights. ThePublishermaytakelegal actiontoenforceitsrights.ThePublishermayrecoverdamagesandcosts,includingbutnotlimitedtolostprofits andattorney’sfees,intheeventlegalactionisrequired. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection 107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,websitewww.copyright.com. RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ 07030,(201)748-6011,fax(201)748-6008,websitehttp://www.wiley.com/go/permissions. ISBN:978-1-11809240-8 PrintedinAsia 10987654321 February17,2012 13:03 ffirs Sheetnumber5 Pagenumberv cyanmagentayellowblack AboutHOWARDANTON HowardAntonobtainedhisB.A.fromLehighUniversity,hisM.A.fromtheUniversityofIllinois, andhisPh.D.fromthePolytechnicUniversityofBrooklyn,allinmathematics. Intheearly1960she workedforBurroughsCorporationandAvcoCorporationatCapeCanaveral,Florida,wherehewas involvedwiththemannedspaceprogram. In1968hejoinedtheMathematicsDepartmentatDrexel University,wherehetaughtfulltimeuntil1983. SincethattimehehasbeenanEmeritusProfessor atDrexelandhasdevotedthemajorityofhistimetotextbookwritingandactivitiesformathematical associations. Dr.AntonwaspresidentoftheEPADELsectionoftheMathematicalAssociationof America(MAA),servedontheBoardofGovernorsofthatorganization,andguidedthecreationof thestudentchaptersoftheMAA.Hehaspublishednumerousresearchpapersinfunctionalanalysis, approximationtheory,andtopology,aswellaspedagogicalpapers. Heisbestknownforhis textbooksinmathematics,whichareamongthemostwidelyusedintheworld. Therearecurrently morethanonehundredversionsofhisbooks,includingtranslationsintoSpanish,Arabic, Portuguese,Italian,Indonesian,French,Japanese,Chinese,Hebrew,andGerman. Histextbookin linearalgebrahaswonboththeTextbookExcellenceAwardandtheMcGuffeyAwardfromthe TextbookAuthor’sAssociation. Forrelaxation,Dr.Antonenjoystravelingandphotography. AboutIRLBIVENS IrlC.Bivens,recipientoftheGeorgePolyaAwardandtheMertenM.HassePrizeforExpository WritinginMathematics,receivedhisA.B.fromPfeifferCollegeandhisPh.D.fromtheUniversity ofNorthCarolinaatChapelHill,bothinmathematics. Since1982,hehastaughtatDavidson College,wherehecurrentlyholdsthepositionofprofessorofmathematics.Atypicalacademicyear seeshimteachingcoursesincalculus,topology,andgeometry. Dr.Bivensalsoenjoysmathematical history,andhisannualHistoryofMathematicsseminarisaperennialfavoritewithDavidson mathematicsmajors. Hehaspublishednumerousarticlesonundergraduatemathematics,aswellas researchpapersinhisspecialty,differentialgeometry. Hehasservedontheeditorialboardsofthe MAAProblemBookseries,theMAADolcianiMathematicalExpositionsseriesandTheCollege MathematicsJournal.Whenheisnotpursuingmathematics,ProfessorBivensenjoysreading, juggling,swimming,andwalking. AboutSTEPHENDAVIS StephenL.DavisreceivedhisB.A.fromLindenwoodCollegeandhisPh.D.fromRutgers Universityinmathematics. HavingpreviouslytaughtatRutgersUniversityandOhioState University,Dr. DaviscametoDavidsonCollegein1981,whereheiscurrentlyaprofessorof mathematics. Heregularlyteachescalculus,linearalgebra,abstractalgebra,andcomputerscience. Asabbaticalin1995–1996tookhimtoSwarthmoreCollegeasavisitingassociateprofessor. ProfessorDavishaspublishednumerousarticlesoncalculusreformandtesting,aswellasresearch papersonfinitegrouptheory,hisspecialty. ProfessorDavishasheldseveralofficesinthe SoutheasternsectionoftheMAA,includingchairandsecretary-treasurerandhasservedonthe MAABoardofGovernors. HeiscurrentlyafacultyconsultantfortheEducationalTestingService forthegradingoftheAdvancedPlacementCalculusExam,webmasterfortheNorthCarolina AssociationofAdvancedPlacementMathematicsTeachers,andisactivelyinvolvedinnurturing mathematicallytalentedhighschoolstudentsthroughleadershipintheCharlotteMathematicsClub. Forrelaxation,heplaysbasketball,juggles,andtravels. ProfessorDavisandhiswifeElisabethhave threechildren,Laura,Anne,andJames,allformercalculusstudents. February17,2012 13:03 ffirs Sheetnumber6 Pagenumbervi cyanmagentayellowblack To my wife Pat and my children: Brian, David, and Lauren In Memory of my mother Shirley my father Benjamin my thesis advisor and inspiration, George Bachman my benefactor in my time of need, Stephen Girard (1750–1831) —HA To my son Robert —IB To my wife Elisabeth my children: Laura, Anne, and James —SD January2,2012 18:35 fpref Sheetnumber1 Pagenumbervii cyanmagentayellowblack PREFACE This tenth edition of Calculus maintains those aspects of previous editions that have led totheseries’success—wecontinuetostriveforstudentcomprehensionwithoutsacrificing mathematical accuracy, and the exercise sets are carefully constructed to avoid unhappy surprisesthatcanderailacalculusclass. Allofthechangestothetentheditionwerecarefullyreviewedbyoutstandingteachers comprisedofbothusersandnonusersofthepreviousedition. Thechargeofthiscommittee wastoensurethatallchangesdidnotalterthoseaspectsofthetextthatattractedusersof thenintheditionandatthesametimeprovidefreshnesstotheneweditionthatwouldattract newusers. NEW TO THIS EDITION • ExercisesetshavebeenmodifiedtocorrespondmorecloselytoquestionsinWileyPLUS. Inaddition,moreWileyPLUSquestionsnowcorrespondtospecificexercisesinthetext. • Newappliedexerciseshavebeenaddedtothebookandexistingappliedexerciseshave beenupdated. • Whereappropriate,additionalskill/practiceexerciseswereadded. OTHER FEATURES Flexibility Thiseditionhasabuilt-inflexibilitythatisdesignedtoserveabroadspectrum ofcalculusphilosophies—fromtraditionalto“reform.” Technologycanbeemphasizedor not,andtheorderofmanytopicscanbepermutedfreelytoaccommodateeachinstructor’s specificneeds. Rigor Thechallengeofwritingagoodcalculusbookistostriketherightbalancebetween rigorandclarity. Ourgoalistopresentprecisemathematicstothefullestextentpossible inanintroductorytreatment. Whereclarityandrigorconflict,wechooseclarity;however, webelieveittobeimportantthatthestudentunderstandthedifferencebetweenacareful proofandaninformalargument,sowehaveinformedthereaderwhentheargumentsbeing presentedareinformalormotivational. Theoryinvolving(cid:2)-δargumentsappearsinseparate sectionssothattheycanbecoveredornot,aspreferredbytheinstructor. RuleofFour The“ruleoffour”referstopresentingconceptsfromtheverbal,algebraic, visual,andnumericalpointsofview. Inkeepingwithcurrentpedagogicalphilosophy,we usedthisapproachwheneverappropriate. Visualization Thiseditionmakesextensiveuseofmoderncomputergraphicstoclarify conceptsandtodevelopthestudent’sabilitytovisualizemathematicalobjects,particularly thosein3-space. Forthosestudentswhoareworkingwithgraphingtechnology,thereare vii January2,2012 18:35 fpref Sheetnumber2 Pagenumberviii cyanmagentayellowblack viii Preface many exercises that are designed to develop the student’s ability to generate and analyze mathematicalcurvesandsurfaces. Quick Check Exercises Eachexercisesetbeginswithapproximatelyfiveexercises (answers included) that are designed to provide students with an immediate assessment of whether they have mastered key ideas from the section. They require a minimum of computationandareansweredbyfillingintheblanks. FocusonConceptsExercises Eachexercisesetcontainsaclearlyidentifiedgroup ofproblemsthatfocusonthemainideasofthesection. TechnologyExercises Mostsectionsincludeexercisesthataredesignedtobesolved using either a graphing calculator or a computer algebra system such as Mathematica, Maple,ortheopensourceprogramSage. Theseexercisesaremarkedwithaniconforeasy identification. Applicability of Calculus One of the primary goals of this text is to link calculus to the real world and the student’s own experience. This theme is carried through in the examplesandexercises. Career Preparation Thistextiswrittenatamathematicallevelthatwillpreparestu- dentsforawidevarietyofcareersthatrequireasoundmathematicsbackground,including engineering,thevarioussciences,andbusiness. Trigonometry Review Deficiencies in trigonometry plague many students, so we haveincludedasubstantialtrigonometryreviewinAppendixB. Appendix on Polynomial Equations Becausemanycalculusstudentsareweak insolvingpolynomialequations,wehaveincludedanappendix(AppendixC)thatreviews theFactorTheorem,theRemainderTheorem,andproceduresforfindingrationalroots. Principles of Integral Evaluation The traditional Techniques of Integration is entitled “Principles of Integral Evaluation” to reflect its more modern approach to the material. Thechapteremphasizesgeneralmethodsandtheroleoftechnologyratherthan specifictricksforevaluatingcomplicatedorobscureintegrals. Historical Notes The biographies and historical notes have been a hallmark of this textfromitsfirsteditionandhavebeenmaintained. Allofthebiographicalmaterialshave beendistilledfromstandardsourceswiththegoalofcapturingandbringingtolifeforthe studentthepersonalitiesofhistory’sgreatestmathematicians. Margin Notes and Warnings Theseappearinthemarginsthroughoutthetextto clarifyorexpandonthetextexpositionortoalertthereadertosomepitfall.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.