ebook img

Calculus: Early Transcendental Functions PDF

1255 Pages·2011·61.607 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus: Early Transcendental Functions

P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November22,2010 21:20 Calculus EARLY TRANSCENDENTAL FUNCTIONS Fourth Edition ROBERT T. SMITH MillersvilleUniversityofPennsylvania ROLAND B. MINTON RoanokeCollege CONFIRMINGPAGES i P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November22,2010 21:20 CALCULUS:EARLYTRANSCENDENTALFUNCTIONS,FOURTHEDITION PublishedbyMcGraw-Hill,abusinessunitofTheMcGraw-HillCompanies,Inc.,1221AvenueoftheAmericas, NewYork,NY10020.Copyright(cid:2)c 2012byTheMcGraw-HillCompanies,Inc.Allrightsreserved.Previous editions(cid:2)c 2007,2002,and2000.Nopartofthispublicationmaybereproducedordistributedinanyformorby anymeans,orstoredinadatabaseorretrievalsystem,withoutthepriorwrittenconsentofTheMcGraw-Hill Companies,Inc.,including,butnotlimitedto,inanynetworkorotherelectronicstorageortransmission,or broadcastfordistancelearning. Someancillaries,includingelectronicandprintcomponents,maynotbeavailabletocustomersoutsidethe UnitedStates. Thisbookisprintedonacid-freepaper. 1234567890QVR/QVR10987654321 ISBN 978–0–07–353232–5 MHID 0–07–353232–0 VicePresident,Editor-in-Chief:MartyLange VicePresident,EDP:KimberlyMeriwetherDavid SeniorDirectorofDevelopment:KristineTibbetts EditorialDirector:StewartK.Mattson SponsoringEditor:JohnR.Osgood DevelopmentalEditor:EveL.Lipton MarketingManager:KevinM.Ernzen LeadProjectManager:PeggyJ.Selle SeniorBuyer:SandyLudovissy LeadMediaProjectManager:JudiDavid SeniorDesigner:LaurieB.Janssen CoverDesigner:RonBissell CoverImage:(cid:2)cGettyimages/GeorgeDieboldPhotography SeniorPhotoResearchCoordinator:JohnC.Leland Compositor:Aptara,Inc. Typeface:10/12TimesRoman Printer:Quad/Graphics Allcreditsappearingonpageorattheendofthebookareconsideredtobeanextensionofthecopyrightpage. LibraryofCongressCataloging-in-PublicationData Smith,RobertT. Calculus:earlytranscendentalfunctions/RobertT.Smith,RolandB.Minton.—4thed. p. cm. Includesindex. ISBN978–0–07–353232–5—ISBN0–07–353232–0(hardcopy:alk.paper) 1.Calculus—Textbooks. I.Minton,RolandB.,1956–II.Title. QA303.2.S653 2012 515—dc22 2010021730 CIP www.mhhe.com CONFIRMINGPAGES ii P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November22,2010 21:20 DEDICATION ToPam,KatieandMichael ToJan,KellyandGreg Andinmemoryofourparents: GeorgeandAnneSmith and PaulandMaryFrancesMinton CONFIRMINGPAGES iii P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November22,2010 21:20 About the Authors Robert T. Smith is Professor of Mathematics and Dean of the School of Science and MathematicsatMillersvilleUniversityofPennsylvania,wherehehasbeenafacultymember since 1987. Prior to that, he was on the faculty at Virginia Tech. He earned his Ph.D. in mathematicsfromtheUniversityofDelawarein1982. ProfessorSmith’smathematicalinterestsareintheapplicationofmathematicstoprob- lemsinengineeringandthephysicalsciences.Hehaspublishedanumberofresearcharticles ontheapplicationsofpartialdifferentialequationsaswellasoncomputationalproblemsin x-raytomography.HeisamemberoftheAmericanMathematicalSociety,theMathematical AssociationofAmerica,andtheSocietyforIndustrialandAppliedMathematics. ProfessorSmithlivesinLancaster,Pennsylvania,withhiswifePam,hisdaughterKatie andhissonMichael.Hisongoingextracurriculargoalistolearntoplaygolfwellenough tonotcomeinlastinhisannualmathematicians/statisticianstournament. RolandB.MintonisProfessorofMathematicsandChairoftheDepartmentofMathemat- ics,ComputerScienceandPhysicsatRoanokeCollege,wherehehastaughtsince1986. Prior to that, he was on the faculty at Virginia Tech. He earned his Ph.D. from Clemson Universityin1982.HeistherecipientofRoanokeCollegeawardsforteachingexcellence andprofessionalachievement,aswellasthe2005VirginiaOutstandingFacultyAwardand the2008GeorgePolyaAwardformathematicsexposition. ProfessorMinton’scurrentresearchprogramisinthemathematicsofgolf,especially the analysis of ShotLink statistics. He has published articles on various aspects of sports science,andco-authoredwithTimPenningsanarticleonPennings’dogElvisandhisability to solve calculus problems. He is co-author of a technical monograph on control theory. Hehassupervisednumerousindependentstudiesandheldworkshopsforlocalhighschool teachers.HeisanactivememberoftheMathematicalAssociationofAmerica. ProfessorMintonlivesinSalem,Virginia,withhiswifeJanandoccasionallywithhis daughter Kelly and son Greg when they visit. He enjoys playing golf when time permits and watching sports events even when time doesn’t permit. Jan also teaches at Roanoke Collegeandisveryactiveinmathematicseducation. InadditiontoCalculus:EarlyTranscendentalFunctions,ProfessorsSmithandMinton arealsocoauthorsofCalculus:ConceptsandConnections(cid:2)c 2006,andthreeearlierbooks forMcGraw-HillHigherEducation.EarliereditionsofCalculushavebeentranslatedinto Spanish,ChineseandKoreanandareinusearoundtheworld. iv CONFIRMINGPAGES P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November22,2010 21:20 Brief Table of Contents .. CHAPTER 0 Preliminaries 1 .. CHAPTER 1 Limits and Continuity 65 .. CHAPTER 2 Differentiation 125 .. CHAPTER 3 Applications of Differentiation 211 .. CHAPTER 4 Integration 299 .. CHAPTER 5 Applications of the Definite Integral 377 .. CHAPTER 6 Integration Techniques 447 .. CHAPTER 7 First-Order Differential Equations 499 .. CHAPTER 8 Infinite Series 539 .. CHAPTER 9 Parametric Equations and Polar Coordinates 633 .. CHAPTER 10 Vectors and the Geometry of Space 695 .. CHAPTER 11 Vector-Valued Functions 757 .. CHAPTER 12 Functions of Several Variables and Partial Differentiation 817 .. CHAPTER 13 Multiple Integrals 909 .. CHAPTER 14 Vector Calculus 985 .. CHAPTER 15 Second-Order Differential Equations 1081 .. APPENDIX A Proofs of Selected Theorems A-1 .. APPENDIX B Answers to Odd-Numbered Exercises A-13 v CONFIRMINGPAGES P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November29,2010 22:27 Table of Contents SeeingtheBeautyandPowerofMathematics xiii ApplicationIndex xxiv .. CHAPTER 0 Preliminaries 1 0.1 Polynomials and Rational Functions 2 . . . TheRealNumberSystemandInequalities EquationsofLines Functions 0.2 Graphing Calculators and Computer Algebra Systems 19 0.3 Inverse Functions 26 0.4 Trigonometric and Inverse Trigonometric Functions 31 . TheInverseTrigonometricFunctions 0.5 Exponential and Logarithmic Functions 42 . . HyperbolicFunctions FittingaCurvetoData 0.6 Transformations of Functions 53 .. CHAPTER 1 Limits and Continuity 65 1.1 A Brief Preview of Calculus: Tangent Lines and the Length of a Curve 65 1.2 The Concept of Limit 70 1.3 Computation of Limits 77 1.4 Continuity and Its Consequences 86 . TheMethodofBisections 1.5 Limits Involving Infinity; Asymptotes 96 . LimitsatInfinity 1.6 Formal Definition of the Limit 106 . . ExploringtheDefinitionofLimitGraphically LimitsInvolvingInfinity 1.7 Limits and Loss-of-Significance Errors 117 . ComputerRepresentationofRealNumbers vi CONFIRMINGPAGES P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November22,2010 21:20 TableofContents vii .. CHAPTER 2 Differentiation 125 2.1 Tangent Lines and Velocity 125 . . TheGeneralCase Velocity 2.2 The Derivative 136 . . AlternativeDerivativeNotations NumericalDifferentiation 2.3 Computation of Derivatives: The Power Rule 145 . . ThePowerRule GeneralDerivativeRules . . HigherOrderDerivatives Acceleration 2.4 The Product and Quotient Rules 153 . . . ProductRule QuotientRule Applications 2.5 The Chain Rule 160 2.6 Derivatives of Trigonometric Functions 167 . Applications 2.7 Derivatives of Exponential and Logarithmic Functions 175 . DerivativesofExponentialFunctions . DerivativeoftheNaturalLogarithm . LogarithmicDifferentiation 2.8 Implicit Differentiation and Inverse Trigonometric Functions 183 . DerivativesoftheInverseTrigonometricFunctions 2.9 The Hyperbolic Functions 192 . TheInverseHyperbolicFunctions 2.10 The Mean Value Theorem 198 .. CHAPTER 3 Applications of Differentiation 211 3.1 Linear Approximations and Newton’sMethod 212 . . LinearApproximations Newton’sMethod 3.2 Indeterminate Forms and l’Hoˆpital’sRule 223 . OtherIndeterminateForms 3.3 Maximum and Minimum Values 232 3.4 Increasing and Decreasing Functions 243 . WhatYouSeeMayNotBeWhatYouGet 3.5 Concavity and the Second Derivative Test 250 3.6 Overview of Curve Sketching 259 3.7 Optimization 269 3.8 Related Rates 279 3.9 Rates of Change in Economics and the Sciences 285 CONFIRMINGPAGES P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November22,2010 21:20 viii TableofContents .. CHAPTER 4 Integration 299 4.1 Antiderivatives 300 4.2 Sums and Sigma Notation 309 . PrincipleofMathematicalInduction 4.3 Area 316 4.4 The Definite Integral 323 . AverageValueofaFunction 4.5 The Fundamental Theorem of Calculus 334 4.6 Integration by Substitution 343 . SubstitutioninDefiniteIntegrals 4.7 Numerical Integration 352 . . Simpson’sRule ErrorBoundsforNumericalIntegration 4.8 The Natural Logarithm as an Integral 364 . TheExponentialFunctionastheInverseoftheNaturalLogarithm .. CHAPTER 5 Applications of the Definite Integral 377 5.1 Area Between Curves 377 5.2 Volume: Slicing, Disks and Washers 386 . . . VolumesbySlicing TheMethodofDisks TheMethodofWashers 5.3 Volumes by Cylindrical Shells 400 5.4 Arc Length and Surface Area 407 . . ArcLength SurfaceArea 5.5 Projectile Motion 414 5.6 Applications of Integration to Physics and Engineering 424 5.7 Probability 435 .. CHAPTER 6 Integration Techniques 447 6.1 Review of Formulas and Techniques 448 6.2 Integration by Parts 452 6.3 Trigonometric Techniques of Integration 459 . IntegralsInvolvingPowersofTrigonometricFunctions . TrigonometricSubstitution 6.4 Integration of Rational Functions Using Partial Fractions 468 . BriefSummaryofIntegrationTechniques 6.5 Integration Tables and Computer Algebra Systems 476 . . UsingTablesofIntegrals IntegrationUsingaComputerAlgebraSystem 6.6 Improper Integrals 483 . ImproperIntegralswithaDiscontinuousIntegrand . ImproperIntegralswithanInfiniteLimitofIntegration . AComparisonTest CONFIRMINGPAGES P1:OSO/OVY P2:OSO/OVY QC:OSO/OVY T1:OSO ET (Early Transcendental) MHDQ228-FM-MAIN MHDQ228-Smith-v1.cls November22,2010 21:20 TableofContents ix .. CHAPTER 7 First-Order Differential Equations 499 7.1 Modeling with Differential Equations 499 . . GrowthandDecayProblems CompoundInterest 7.2 Separable Differential Equations 509 . LogisticGrowth 7.3 Direction Fields and Euler’sMethod 518 7.4 Systems of First-Order Differential Equations 529 . Predator-PreySystems .. CHAPTER 8 Infinite Series 539 8.1 Sequences of Real Numbers 540 8.2 Infinite Series 552 8.3 The Integral Test and Comparison Tests 562 . ComparisonTests 8.4 Alternating Series 573 . EstimatingtheSumofanAlternatingSeries 8.5 Absolute Convergence and the Ratio Test 579 . . TheRatioTest TheRootTest . SummaryofConvergenceTests 8.6 Power Series 587 8.7 Taylor Series 595 . RepresentationofFunctionsasPowerSeries . ProofofTaylor’sTheorem 8.8 Applications of Taylor Series 607 . TheBinomialSeries 8.9 Fourier Series 615 . FunctionsofPeriodOtherThan2π . FourierSeriesandMusicSynthesizers .. CHAPTER 9 Parametric Equations and Polar Coordinates 633 9.1 Plane Curves and Parametric Equations 633 9.2 Calculus and Parametric Equations 642 9.3 Arc Length and Surface Area in Parametric Equations 649 9.4 Polar Coordinates 657 9.5 Calculus and Polar Coordinates 668 9.6 Conic Sections 676 . . . Parabolas Ellipses Hyperbolas 9.7 Conic Sections in Polar Coordinates 685 CONFIRMINGPAGES

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.