ebook img

Calculus PDF

1232 Pages·2013·56.592 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculus

Calculus Fourth Edition ROBERT T. SMITH MillersvilleUniversityofPennsylvania ROLAND B. MINTON RoanokeCollege CALCULUS,FOURTHEDITION PublishedbyMcGraw-Hill,abusinessunitofTheMcGraw-HillCompanies,Inc.,1221AvenueoftheAmericas, NewYork,NY10020.Copyright�c 2012byTheMcGraw-HillCompanies,Inc.Allrightsreserved.Previous editions�c 2008,2002,and2000.Nopartofthispublicationmaybereproducedordistributedinanyformorby anymeans,orstoredinadatabaseorretrievalsystem,withoutthepriorwrittenconsentofTheMcGraw-Hill Companies,Inc.,including,butnotlimitedto,inanynetworkorotherelectronicstorageortransmission,or broadcastfordistancelearning. Someancillaries,includingelectronicandprintcomponents,maynotbeavailabletocustomersoutsidethe UnitedStates. Thisbookisprintedonacid-freepaper. 1234567890QVR/QVR10987654321 ISBN 978–0–07–338311–8 MHID 0–07–338311–2 VicePresident,Editor-in-Chief:MartyLange VicePresident,EDP:KimberlyMeriwetherDavid SeniorDirectorofDevelopment:KristineTibbetts EditorialDirector:StewartK.Mattson SponsoringEditor:JohnR.Osgood DevelopmentalEditor:EveL.Lipton MarketingManager:KevinM.Ernzen LeadProjectManager:PeggyJ.Selle SeniorBuyer:SandyLudovissy LeadMediaProjectManager:JudiDavid SeniorDesigner:LaurieB.Janssen CoverDesigner:RonBissell CoverImage:�c Gettyimages/GeorgeDieboldPhotography SeniorPhotoResearchCoordinator:JohnC.Leland Compositor:Aptara,Inc. Typeface:10/12TimesRoman Printer:Quad/Graphics Allcreditsappearingonpageorattheendofthebookareconsideredtobeanextensionofthecopyrightpage. LibraryofCongressCataloging-in-PublicationData Smith,RobertT.(RobertThomas),1955- Calculus/RobertT.Smith,RolandB.Minton.—4thed. p. cm. Includesindex. ISBN978–0–07–338311–8—ISBN0–07–338311–2(hardcopy:alk.paper) 1.Transcendentalfunctions—Textbooks. 2.Calculus—Textbooks. I.Minton,RolandB.,1956–II.Title. QA353.S649 2012 515 .22—dc22 2010030314 www.mhhe.com DEDICATION ToPam,KatieandMichael ToJan,KellyandGreg Andinmemoryofourparents: GeorgeandAnneSmith and PaulandMaryFrancesMinton About the Authors Robert T. Smith is Professor of Mathematics and Dean of the School of Science and MathematicsatMillersvilleUniversityofPennsylvania,wherehehasbeenafacultymember since 1987. Prior to that, he was on the faculty at Virginia Tech. He earned his Ph.D. in mathematicsfromtheUniversityofDelawarein1982. ProfessorSmith’smathematicalinterestsareintheapplicationofmathematicstoprob- lemsinengineeringandthephysicalsciences.Hehaspublishedanumberofresearcharticles ontheapplicationsofpartialdifferentialequationsaswellasoncomputationalproblemsin x-raytomography.HeisamemberoftheAmericanMathematicalSociety,theMathematical AssociationofAmerica,andtheSocietyforIndustrialandAppliedMathematics. ProfessorSmithlivesinLancaster,Pennsylvania,withhiswifePam,hisdaughterKatie andhissonMichael.Hisongoingextracurriculargoalistolearntoplaygolfwellenough tonotcomeinlastinhisannualmathematicians/statisticianstournament. RolandB.MintonisProfessorofMathematicsandChairoftheDepartmentofMathemat- ics,ComputerScienceandPhysicsatRoanokeCollege,wherehehastaughtsince1986. Prior to that, he was on the faculty at Virginia Tech. He earned his Ph.D. from Clemson Universityin1982.HeistherecipientofRoanokeCollegeawardsforteachingexcellence andprofessionalachievement,aswellasthe2005VirginiaOutstandingFacultyAwardand the2008GeorgePolyaAwardformathematicsexposition. ProfessorMinton’scurrentresearchprogramisinthemathematicsofgolf,especially the analysis of ShotLink statistics. He has published articles on various aspects of sports science,andco-authoredwithTimPenningsanarticleonPennings’dogElvisandhisability to solve calculus problems. He is co-author of a technical monograph on control theory. Hehassupervisednumerousindependentstudiesandheldworkshopsforlocalhighschool teachers.HeisanactivememberoftheMathematicalAssociationofAmerica. ProfessorMintonlivesinSalem,Virginia,withhiswifeJanandoccasionallywithhis daughter Kelly and son Greg when they visit. He enjoys playing golf when time permits and watching sports events even when time doesn’t permit. Jan also teaches at Roanoke Collegeandisveryactiveinmathematicseducation. InadditiontoCalculus:EarlyTranscendentalFunctions,ProfessorsSmithandMinton arealsocoauthorsofCalculus:ConceptsandConnections�c 2006,andthreeearlierbooks forMcGraw-HillHigherEducation.EarliereditionsofCalculushavebeentranslatedinto Spanish,ChineseandKoreanandareinusearoundtheworld. iv Brief Table of Contents .. CHAPTER 0 Preliminaries 1 .. CHAPTER 1 Limits and Continuity 47 .. CHAPTER 2 Differentiation 107 .. CHAPTER 3 Applications of Differentiation 173 .. CHAPTER 4 Integration 251 .. CHAPTER 5 Applications of the Definite Integral 315 .. CHAPTER 6 Exponentials, Logarithms and Other Transcendental Functions 375 .. CHAPTER 7 Integration Techniques 421 .. CHAPTER 8 First-Order Differential Equations 491 .. CHAPTER 9 Infinite Series 531 .. CHAPTER 10 Parametric Equations and Polar Coordinates 625 .. CHAPTER 11 Vectors and the Geometry of Space 687 .. CHAPTER 12 Vector-Valued Functions 749 .. CHAPTER 13 Functions of Several Variables and Partial Differentiation 809 .. CHAPTER 14 Multiple Integrals 901 .. CHAPTER 15 Vector Calculus 977 .. CHAPTER 16 Second-Order Differential Equations 1073 .. APPENDIX A Proofs of Selected Theorems A-1 .. APPENDIX B Answers to Odd-Numbered Exercises A-13 v Table of Contents SeeingtheBeautyandPowerofMathematics xiii ApplicationsIndex xxiv .. CHAPTER 0 Preliminaries 1 0.1 The Real Numbers and the Cartesian Plane 2 . . TheRealNumberSystemandInequalities TheCartesianPlane 0.2 Lines and Functions 9 . . EquationsofLines Functions 0.3 Graphing Calculators and Computer Algebra Systems 21 0.4 Trigonometric Functions 27 0.5 Transformations of Functions 36 .. CHAPTER 1 Limits and Continuity 47 1.1 A Brief Preview of Calculus: Tangent Lines and the Length of a Curve 47 1.2 The Concept of Limit 52 1.3 Computation of Limits 59 1.4 Continuity and Its Consequences 68 . TheMethodofBisections 1.5 Limits Involving Infinity; Asymptotes 78 . LimitsatInfinity 1.6 Formal Definition of the Limit 87 . . ExploringtheDefinitionofLimitGraphically LimitsInvolvingInfinity 1.7 Limits and Loss-of-Significance Errors 98 . ComputerRepresentationofRealNumbers .. CHAPTER 2 Differentiation 107 2.1 Tangent Lines and Velocity 107 . . TheGeneralCase Velocity 2.2 The Derivative 118 . . AlternativeDerivativeNotations NumericalDifferentiation vi TableofContents vii 2.3 Computation of Derivatives: The Power Rule 127 . . ThePowerRule GeneralDerivativeRules . . HigherOrderDerivatives Acceleration 2.4 The Product and Quotient Rules 135 . . . ProductRule QuotientRule Applications 2.5 The Chain Rule 142 2.6 Derivatives of Trigonometric Functions 147 . Applications 2.7 Implicit Differentiation 155 2.8 The Mean Value Theorem 162 .. CHAPTER 3 Applications of Differentiation 173 3.1 Linear Approximations and Newton’sMethod 174 . . LinearApproximations Newton’sMethod 3.2 Maximum and Minimum Values 185 3.3 Increasing and Decreasing Functions 195 . WhatYouSeeMayNotBeWhatYouGet 3.4 Concavity and the Second Derivative Test 203 3.5 Overview of Curve Sketching 212 3.6 Optimization 223 3.7 Related Rates 234 3.8 Rates of Change in Economics and the Sciences 239 .. CHAPTER 4 Integration 251 4.1 Antiderivatives 252 4.2 Sums and Sigma Notation 259 . PrincipleofMathematicalInduction 4.3 Area 266 4.4 The Definite Integral 273 . AverageValueofaFunction 4.5 The Fundamental Theorem of Calculus 284 4.6 Integration by Substitution 292 . SubstitutioninDefiniteIntegrals 4.7 Numerical Integration 298 . . Simpson’sRule ErrorBoundsforNumericalIntegration .. CHAPTER 5 Applications of the Definite Integral 315 5.1 Area Between Curves 315 5.2 Volume: Slicing, Disks and Washers 324 . . . VolumesbySlicing TheMethodofDisks TheMethodofWashers viii TableofContents 5.3 Volumes by Cylindrical Shells 338 5.4 Arc Length and Surface Area 345 . . ArcLength SurfaceArea 5.5 Projectile Motion 352 5.6 Applications of Integration to Physics and Engineering 361 .. CHAPTER 6 Exponentials, Logarithms and Other Transcendental Functions 375 6.1 The Natural Logarithm 375 . LogarithmicDifferentiation 6.2 Inverse Functions 384 6.3 The Exponential Function 391 . DerivativeoftheExponentialFunction 6.4 The Inverse Trigonometric Functions 399 6.5 The Calculus of the Inverse Trigonometric Functions 405 . IntegralsInvolvingtheInverseTrigonometricFunctions 6.6 The Hyperbolic Functions 411 . . TheInverseHyperbolicFunctions DerivationoftheCatenary .. CHAPTER 7 Integration Techniques 421 7.1 Review of Formulas and Techniques 422 7.2 Integration by Parts 426 7.3 Trigonometric Techniques of Integration 433 . IntegralsInvolvingPowersofTrigonometricFunctions . TrigonometricSubstitution 7.4 Integration of Rational Functions Using Partial Fractions 442 . BriefSummaryofIntegrationTechniques 7.5 Integration Tables and Computer Algebra Systems 450 . . UsingTablesofIntegrals IntegrationUsingaComputerAlgebraSystem 7.6 Indeterminate Forms and L’Hoˆpital’sRule 457 . OtherIndeterminateForms 7.7 Improper Integrals 467 . ImproperIntegralswithaDiscontinuousIntegrand . . ImproperIntegralswithanInfiniteLimitofIntegration AComparisonTest 7.8 Probability 479 .. CHAPTER 8 First-Order Differential Equations 491 8.1 Modeling with Differential Equations 491 . . GrowthandDecayProblems CompoundInterest 8.2 Separable Differential Equations 501 . LogisticGrowth TableofContents ix 8.3 Direction Fields and Euler’sMethod 510 8.4 Systems of First-Order Differential Equations 521 . Predator-PreySystems .. CHAPTER 9 Infinite Series 531 9.1 Sequences of Real Numbers 532 9.2 Infinite Series 544 9.3 The Integral Test and Comparison Tests 554 . ComparisonTests 9.4 Alternating Series 565 . EstimatingtheSumofanAlternatingSeries 9.5 Absolute Convergence and the Ratio Test 571 . . . TheRatioTest TheRootTest SummaryofConvergenceTests 9.6 Power Series 579 9.7 Taylor Series 587 . RepresentationofFunctionsasPowerSeries . ProofofTaylor’sTheorem 9.8 Applications of Taylor Series 599 . TheBinomialSeries 9.9 Fourier Series 607 . FunctionsofPeriodOtherThan2π . FourierSeriesandMusicSynthesizers .. CHAPTER 10 Parametric Equations and Polar Coordinates 625 10.1 Plane Curves and Parametric Equations 625 10.2 Calculus and Parametric Equations 634 10.3 Arc Length and Surface Area in Parametric Equations 641 10.4 Polar Coordinates 649 10.5 Calculus and Polar Coordinates 660 10.6 Conic Sections 668 . . . Parabolas Ellipses Hyperbolas 10.7 Conic Sections in Polar Coordinates 677 .. CHAPTER 11 Vectors and the Geometry of Space 687 11.1 Vectors in the Plane 688 11.2 Vectors in Space 697 . VectorsinR3 11.3 The Dot Product 704 . ComponentsandProjections x TableofContents 11.4 The Cross Product 714 11.5 Lines and Planes in Space 726 . PlanesinR3 11.6 Surfaces in Space 734 . . . CylindricalSurfaces QuadricSurfaces AnApplication .. CHAPTER 12 Vector-Valued Functions 749 12.1 Vector-Valued Functions 750 . ArcLengthinR3 12.2 The Calculus of Vector-Valued Functions 758 12.3 Motion in Space 769 . EquationsofMotion 12.4 Curvature 779 12.5 Tangent and Normal Vectors 786 . . TangentialandNormalComponentsofAcceleration Kepler’sLaws 12.6 Parametric Surfaces 799 .. CHAPTER 13 Functions of Several Variables and Partial Differentiation 809 13.1 Functions of Several Variables 809 13.2 Limits and Continuity 822 13.3 Partial Derivatives 833 13.4 Tangent Planes and Linear Approximations 844 . IncrementsandDifferentials 13.5 The Chain Rule 854 . ImplicitDifferentiation 13.6 The Gradient and Directional Derivatives 864 13.7 Extrema of Functions of Several Variables 874 . ProofoftheSecondDerivativesTest 13.8 Constrained Optimization and Lagrange Multipliers 887 .. CHAPTER 14 Multiple Integrals 901 COEFFICENT OF RESTITUTION RACKETS HELD BY VISE BALL VELOCITY OF 385 M PA FRAME BALL HITS FRAME IN THIS AREA 14.1 Double Integrals 901 . 77474352245344554044404324534755432225 22333722424547552247262286172233270420 14.2 A.rDDeooauu,bbVlleeoIInnlutteemggrreaallssaoonvvdeerrCaGReenenecttraaenlrgRleoegfioMnsass 916 55 545152552355 524745445030 . MomentsandCenterofMass 52 53 6665THROAT FIRGGSrrTeeaa StteeTrrR TTINhhaaGnn 34 14.3 Double Integrals in Polar Coordinates 926 FIRST STRING GGrreeaatteerr TThhaann 56 Prince Racket A M.F. MRoaocdk eSttandard 14.4 Surface Area 933 THROAT 14.5 Triple Integrals 938 . MassandCenterofMass

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.