ebook img

Calculation of Pressure Rise in Electrical Installations due to Internal Arcs Considering SF6-Air PDF

135 Pages·2010·2.26 MB·German
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Calculation of Pressure Rise in Electrical Installations due to Internal Arcs Considering SF6-Air

Calculation of Pressure Rise in Electrical Installations due to Internal Arcs Considering SF -Air Mixtures 6 and Arc Energy Absorbers Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Kittipong Anantavanich, M. Sc. aus Bangkok, Thailand Berichter: Univ.-Prof. Dr. rer. nat. Gerhard Pietsch Univ.-Prof. Dr.-Ing. Hans-Jürgen Haubrich Tag der mündlichen Prüfung: 05. März 2010 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Aachener Beiträge zur HOCHSPANNUNGSTECHNIK Herausgeber: Univ.-Prof. Dr.-Ing. A. Schnettler Kittipong Anantavanich Calculation of Pressure Rise in Electrical Installations due to Internal Arcs Considering SF -Air Mixtures and 6 Arc Energy Absorbers ISBN: 3-86130-677-8 1. Auflage 2010 Bibliografische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deut- schen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. Das Werk einschließlich seiner Teile ist urheberrechtlich geschützt. Jede Verwendung ist ohne die Zustimmung des Herausgebers außerhalb der engen Grenzen des Urhebergesetzes unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbei- tung in elektronischen Systemen. Vertrieb: 1. Auflage 2010 © Verlagshaus Mainz GmbH Aachen Süsterfeldstr. 83, 52072 Aachen Tel. 0241/87 34 34 Fax 0241/87 55 77 www.Verlag-Mainz.de Herstellung: Druck und Verlagshaus Mainz GmbH Aachen Süsterfeldstraße 83 52072 Aachen Tel. 0241/87 34 34 Fax 0241/87 55 77 www.DruckereiMainz.de www.Druckservice-Aachen.de Satz: nach Druckvorlage des Autors Umschlaggestaltung: Druckerei Mainz printed in Germany D 82 (Diss. RWTH Aachen University, 2010) Acknowledgement This thesis has been written during my activities as a research associate at the Insti- tute for High Voltage Technology (IFHT), RWTH Aachen University, Germany. First of all, I would like to express my deep appreciation to Prof. Dr. rer. nat. Gerhard J. Pietsch for giving me the opportunity to pursue my doctoral degree un- der his supervision. His continuous support, precious advices and fruitful discus- sions have significantly contributed to the success of this thesis. I am very grateful to Prof. Dr.-Ing. Hans-Jürgen Haubrich for kindly being the co- supervisor and for his interest in this work. Furthermore, I would like to thank Prof. Dr.-Ing. Armin Schnettler, director of the institute, for allowing me to work at the institute and for providing the support re- quired for this thesis. My thanks also go to all former and current colleagues at IFHT for the good colla- boration as well as their wonderful friendship and support. These thanks are also extended to all students, who have assisted me in completing this work within the scope of their diploma and master’s theses as well as student assistantships. Financial support by the German Federal Ministry of Economics and Technology through the AiF project No. 15657 N is gratefully acknowledged. Moreover, I would like to thank the Electricity Generating Authority of Thailand (EGAT) for allowing and supporting me to pursue my doctoral degree at IFHT, RWTH Aachen University. Last but not least, I would like to express my sincere gratitude to my parents and my sister for invaluable support and encouragement especially during my stay in Germany. I wish to thank my wife for her love, her understanding and her patience during the time, as I have been compiling this thesis. To them, I would like to de- dicate this work and all of my achievements. Aachen, March 2010 Kittipong Anantavanich Abstract Internal arcs cause sudden temperature and thus pressure increase in electrical in- stallations, which may endanger personnel, installation rooms or buildings as well as the security of power supply. Overpressure can be controlled by e.g. relief open- ings. The proof of internal arc withstand is usually performed by tests in high power laboratories or by pressure calculations especially in cases, where tests are impractical. Nowadays, there exist reliable pressure calculation methods, which are able to de- termine pressure rise due to internal arcing. For practical applications, two methods are of importance, the CFD calculation method, which provides spatially resolved results, and the standard calculation method providing spatially averaged results. However, the application range of these methods is limited. This is especially true if SF -air mixtures have to be considered (SF -insulated switchgear) or if arc en- 6 6 ergy absorbers are installed. In this thesis, both effects, which are important for pressure rise in the case of in- ternal arcing, are treated. The key point of modelling SF -air mixture flows of 6 changing composition is the generation and treatment of reliable gas data. A fur- ther main focus is the modelling of arc energy absorbers. For this purpose, heat absorption and flow resistance are considered first of all separately. In order to de- scribe both effects simultaneously, existing and improved model approaches are evaluated and appropriate model combinations are proposed. SF -air mixtures and the effect of arc absorbers are implemented in both calcula- 6 tion methods for the first time with reliable gas data. Special care is taken on data handling and modification of the equation systems. The inclusion of the effect of absorbers is achieved by considering heat sinks and friction forces. Based on the standard calculation method, a versatile improved software tool (Im- proved Standard Calculation Method) for the determination of pressure develop- ments is developed, which is fast, easy to handle, able to treat SF -air mixtures and 6 absorbers based on reliable gas data, platform independent and including any num- ber of rooms and openings. Both calculation methods are validated by comparing measurements in different arrangements with calculation results. Berechnung des Druckanstieges in elektrischen Anlagen im Störlichtbogenfall unter Berücksichtigung von SF -Luft-Gemischen 6 und Lichtbogenenergieabsorbern Kurzfassung Störlichtbögen in elektrischen Anlagen verursachen einen schnellen Temperatur- und damit Druckanstieg im betroffenen Anlagenraum, der das Bedienpersonal, die Anlage und sogar das Schaltanlagengebäude sowie die Versorgungssicherheit ge- fährden kann. Der entstehende Überdruck wird üblicherweise durch Druckentlas- tungsöffnungen begrenzt. Der Nachweis der Störlichtbogensicherheit erfolgt durch Versuche in Hochleistungsprüffeldern oder – wo dieses nicht möglich oder prakti- kabel ist – über Druckberechnungen. Heutzutage existieren bereits bewährte Druckberechnungsverfahren, die den Druckanstieg aufgrund von Fehlerlichtbögen bestimmen können. Für praktische Anwendungen haben sich zwei Arten von Druckberechnungsverfahren als bedeut- sam erwiesen, das „CFD-Verfahren“, das ortsaufgelöste Ergebnisse mit einer Computational Fluid Dynamics-Software liefert und das sogenannte „Standardver- fahren“, mit dem man räumlich gemittelte Druckverläufe erhält. Der Anwendungs- bereich dieser Verfahren ist jedoch eingeschränkt. Zum Beispiel ist es bislang mit allen bekannten Verfahren nicht möglich, das Ausströmverhalten bei SF -isolierten 6 Anlagen zuverlässig in die Druckberechnung einzubeziehen. Dasselbe gilt für Lichtbogenenergieabsorber, deren Wirkung bislang wenig theoretisch untersucht worden ist. In der vorliegenden Arbeit werden diese für die Druckberechnung wichtigen Phä- nomene betrachtet. Schwerpunkt bei der Modellierung von ausströmenden SF - 6 Luft-Gemischen mit sich verändernder Gaszusammensetzung ist die Erzeugung und Behandlung von zuverlässigen realen Gasdaten. Damit werden Effekte wie z.B. Dissoziation, Ionisation und Wechselwirkungen zwischen Gaspartikeln ein- schließlich chemischer Reaktionen mitberücksichtigt. Ein weiterer Schwerpunkt der Arbeit ist die Modellierung von Absorbern. Hierzu werden zunächst die Wärmeaufnahme und der Strömungswiderstand getrennt be- handelt. Um beide Wirkungen gleichzeitig zu beschreiben, werden bestehende so- wie verbesserte Modellansätze evaluiert und geeignete Kombinationen von Mo- dellansätzen vorgeschlagen. Die Strömung von SF -Luft-Gemischen und die Wirkung von Lichtbogenenergie- 6 absorbern werden erstmalig in ein Standardverfahren und mit realistischen Gasdaten in ein CFD-Verfahren eingebunden. Dabei spielt die Behandlung der Gasdaten und die Modifizierung der Gleichungssysteme eine besondere Rolle. – Die Wirkung von Absorbern erfolgt durch die Berücksichtigung von Wärmesen- ken und Reibungskräften. Weiterhin wird ein auf dem Standardverfahren beruhendes Rechenprogramm ent- wickelt, das schnell Resultate liefert, einfach zu handhaben ist und die beiden Phä- nomene Gasgemischströmung und die Wirkung von Energieabsorbern mitberück- sichtigen kann (Improved Standard Calculation (ISC)-Methode). Dabei werden realistische Gasdaten verwendet. Das Programm ist in Java programmiert und da- mit plattformunabhängig, vielseitig einsetzbar und z.B. in der Lage, eine beliebige Anzahl von miteinander verbundenen Räumen und Druckentlastungsöffnungen zu berücksichtigen. Durch Vergleich von Messungen in verschiedenen Anordnungen mit Rechener- gebnissen, durchgeführt mit dem CFD- als auch dem ISC-Verfahren, wird die Ein- bindung von Gasgemischströmungen und Energieabsorbern in die beiden Druckbe- rechnungsverfahren validiert. Contents i Contents (cid:2) 1(cid:2)Introduction ............................................................................................. 1(cid:2) (cid:2) (cid:2) 1.1 Introduction to the Subject .............................................................................. 1 (cid:2) (cid:2) 1.2 State of Knowledge ......................................................................................... 2 (cid:2) (cid:2) 1.2.1 Pressure Calculation Methods............................................................... 2 (cid:2) (cid:2) 1.2.2 Consideration of SF -Air Mixtures ....................................................... 7 6 (cid:2) (cid:2) 1.2.3 Modelling of Arc Energy Absorbers .................................................... 8 (cid:2) (cid:2) 1.3 Objectives ........................................................................................................ 9 2(cid:2)Fundamentals of Pressure Calculation ............................................... 11(cid:2) (cid:2) (cid:2) 2.1 Energy Balance during Internal Arcing ........................................................ 11 (cid:2) (cid:2) 2.2 Gas Models under Consideration .................................................................. 13 (cid:2) (cid:2) 2.2.1 Ideal Gas Model .................................................................................. 13 (cid:2) (cid:2) 2.2.2 Real Gas Model ................................................................................... 15 (cid:2) (cid:2) 2.3 CFD Calculation Method .............................................................................. 17 (cid:2) (cid:2) 2.3.1 Governing Equations .......................................................................... 17 (cid:2) (cid:2) 2.3.2 Turbulence Model ............................................................................... 19 (cid:2) (cid:2) 2.3.3 Energy Input ........................................................................................ 20 (cid:2) (cid:2) 2.3.4 CFD Solver ......................................................................................... 20 (cid:2) (cid:2) 2.4 Standard Calculation Method ....................................................................... 23 (cid:2) (cid:2) 2.4.1 Derivation of Governing Equations .................................................... 23 (cid:2) (cid:2) 2.4.2 Numerical Methods ............................................................................. 27 3(cid:2)Modelling of SF -Air Mixtures and Arc Energy Absorbers ................ 28(cid:2) 6 (cid:2) (cid:2) 3.1 Gas Mixtures ................................................................................................. 28 3.1.1(cid:2) Properties of Mixtures without Particle Interactions and Chemical (cid:2) Reactions ............................................................................................. 28 3.1.2(cid:2) Properties of Mixtures with Particle Interactions and Chemical (cid:2) Reactions ............................................................................................. 29 ii Contents (cid:2) 3.1.3 Comparison of Properties of SF -Air Mixtures with and without 6 (cid:2) Particle Interactions and Chemical Reactions..................................... 30 (cid:2) (cid:2) 3.1.4 Consideration of Gas Properties of Changing Composition ............... 31 (cid:2) (cid:2) 3.1.5 Preparation of Gas Data ...................................................................... 32 (cid:2) (cid:2) 3.1.6 Influence of Gas Impurities ................................................................. 33 (cid:2) (cid:2) 3.2 Arc Energy Absorbers ................................................................................... 36 (cid:2) (cid:2) 3.2.1 Effects of Absorbers ............................................................................ 37 (cid:2) (cid:2) 3.2.2 Modelling of Heat Energy Absorption ............................................... 37 (cid:2) (cid:2) 3.2.3 Modelling of Flow Resistance ............................................................ 41 4(cid:2)Implementation of Gas Mixtures and Arc Energy Absorbers in the CFD Calculation Method ...................................................................... 47(cid:2) (cid:2) (cid:2) 4.1 Description of the Software Package ............................................................ 47 (cid:2) (cid:2) 4.2 Implementation of SF -Air Mixtures ............................................................ 48 6 (cid:2) (cid:2) 4.2.1 Determination of SF Mass Fractions ................................................. 48 6 (cid:2) (cid:2) 4.2.2 Interpolation of Gas Properties ........................................................... 48 (cid:2) (cid:2) 4.3 Implementation of Arc Energy Absorbers .................................................... 49 (cid:2) (cid:2) 4.3.1 Absorbed Heat Energy ........................................................................ 49 (cid:2) (cid:2) 4.3.2 Pressure Loss ....................................................................................... 49 5(cid:2)Implementation of Gas Mixtures and Arc Energy Absorbers in the Standard Calculation Method (Improved Standard Calculation Method) .................................................................................................. 51(cid:2) (cid:2) (cid:2) 5.1 Implementation of SF -Air Mixtures ............................................................ 51 6 (cid:2) (cid:2) 5.2 Implementation of Arc Energy Absorbers .................................................... 52 (cid:2) (cid:2) 5.3 Extension to Further Rooms and Openings .................................................. 53 (cid:2) (cid:2) 5.4 Improved Software Package ......................................................................... 54 6(cid:2)Validation ............................................................................................... 57(cid:2) (cid:2) (cid:2) 6.1 Arrangements and Test Conditions ............................................................... 57 (cid:2) (cid:2) 6.1.1 Arrangement 1 ..................................................................................... 57 Contents iii (cid:2) (cid:2) 6.1.2 Arrangement 2 ..................................................................................... 58 (cid:2) (cid:2) 6.1.3 Arrangement 3 ..................................................................................... 59 (cid:2) (cid:2) 6.1.4 Arrangement 4 ..................................................................................... 60 (cid:2) (cid:2) 6.1.5 Arrangement 5 ..................................................................................... 62 (cid:2) (cid:2) 6.1.6 Arrangement 6 ..................................................................................... 63 (cid:2) (cid:2) 6.2 CFD Calculation Method .............................................................................. 65 (cid:2) (cid:2) 6.2.1 SF -Air Mixtures ................................................................................. 65 6 (cid:2) (cid:2) 6.2.2 Arc Energy Absorbers ......................................................................... 68 (cid:2) (cid:2) 6.2.3 Validation Results ............................................................................... 81 (cid:2) (cid:2) 6.3 Improved Standard Calculation Method ....................................................... 82 (cid:2) (cid:2) 6.3.1 SF -Air Mixtures ................................................................................. 82 6 (cid:2) (cid:2) 6.3.2 Arc Energy Absorbers ......................................................................... 86 (cid:2) (cid:2) 6.3.3 Validation Results ............................................................................... 90 7(cid:2)Conclusions ........................................................................................... 91(cid:2) 8(cid:2)References ............................................................................................. 94(cid:2) 9(cid:2)Appendixes .......................................................................................... 107(cid:2) A: Fundamentals of the k-ε Model .................................................................... 107(cid:2) (cid:2) B: Heat Transfer Coefficient of Parallel Tube Bundles .................................... 109 (cid:2) C: Averaging Methods for Modelling Arc Energy Absorbers .......................... 112 (cid:2) D: Pressure Loss Coefficient of Parallel Tube Bundles .................................... 114 (cid:2) E: Example of Pressure Development in a Cubic and Elongate Relief Room .. 116 (cid:2) F: Overpressures in Small Relief Rooms with High Energy Input ................... 120 List of Abbreviations and Symbols ...................................................... 121(cid:2) Curriculum Vitae(cid:2) 1.1 Introduction to the Subject 1 1 Introduction 1.1 Introduction to the Subject Internal arcs are high current fault arcs, which occur e.g. in metal-enclosed electri- cal installations such as switchgear, gas-insulated transmission lines (GIL) and terminal boxes. They are initiated e.g. by surges in power grids, insulation failure, malfunction of equipment, and human error [Pec80, Dun86]. In average, one arc fault occurs per 10,000 switchgear and year [Pit03, Fra05]. Although this is ex- tremely seldom, it must be considered in the safety concept. During internal arcing, the arc energy is transferred to the surroundings by differ- ent mechanisms e.g. heat conduction, convection, radiation [Das88]. Only part of the energy is absorbed by the surrounding gas causing temperature and thus pres- sure rise. Energy used for electrode melting and evaporation as well as radiation, which is absorbed by enclosure walls, does not contribute to pressure rise. The sudden increase in pressure during internal arcing may endanger personnel and electrical installations [Lee82, Lee87, Cra93, Cap98, Bre09] and power supply. Furthermore, buildings may be stressed by overpressure [Pig76, Pri82, Pri97, Dre98] resulting in damages e.g. cracks in walls or even collapse. These effects become more and more important, because secondary substations are increasingly installed near or within public areas. Hence, large concerns especially about the public and construction safety of electrical installations arise. Consequently, manu- facturers and constructors are forced to prove the safety of their products e.g. by liability and product safety laws. Pressure stress of electrical installations and especially their buildings can be re- duced by means of active or passive measures. An example of active measures is the high speed shorting switch in combination with an arc detector [Bee98, Gar01, Kop02, Pic09]. This device commutates the short-circuit current into a bypass so that the arc energy and thus overpressure is limited. Typical passive (constructive) measures are pressure relief openings e.g. rupture discs [Obe86, Dir91], flaps [Dri92, Pri97, Deb04], jalousies [Pri00, Pri03], through which hot gas flows out of the faulty compartment reducing overpressure. Furthermore, buffer volumes like further compartments within the switchboard and cable cellars are sometimes used to retard pressure rise in relief rooms e.g. switchgear and transformer rooms with opening to the environment. By this means, overpressure in these rooms is dis-

Description:
Herausgebers außerhalb der engen Grenzen des Urhebergesetzes unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbei- tung in elektronischen Systemen. Aachener Beiträge zur HOCHSPANNUNGSTECHNIK.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.