UC San Diego UC San Diego Electronic Theses and Dissertations Title Calcium dynamics in astrocytes : from oscillations to Alzheimer's Permalink https://escholarship.org/uc/item/60k4x659 Author MacDonald, Christopher Lloyd Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Calcium Dynamics in Astrocytes: From Oscillations to Alzheimer’s A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering with Specialization in Multi-scale Biology by Christopher Lloyd MacDonald Committee in charge: Professor Gabriel Silva, Chair Professor Henry Abarbanel Professor Anna Devor Professor Herbert Levine Professor Kun Zhang 2011 Copyright Christopher Lloyd MacDonald, 2011 All rights reserved. The dissertation of Christopher Lloyd MacDonald is ap- proved, and it is acceptable in quality and form for pub- lication on microfilm and electronically: Chair University of California, San Diego 2011 iii DEDICATION To two, the loneliest number since the number one. iv EPIGRAPH A careful quotation conveys brilliance. —Smarty Pants v TABLE OF CONTENTS Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Astrocyte intercellular calcium waves . . . . . . . . . . . 5 1.2.1 Are intercellular calcium waves regenerative? . . . 7 1.2.2 Minimal network signaling model of astrocyte sig- naling . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Alzheimer’s Disease, amyloid beta, and astrocytes 9 1.2.4 Why does Aβ cause spontaneous calcium waves, and how can we prevent it? . . . . . . . . . . . . 11 1.3 Fractional calculus . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Mathematical introduction to fractional calculus . 12 1.3.2 Applications of fractional calculus . . . . . . . . . 15 1.3.3 Developing useful numerical algorithms . . . . . . 15 Chapter 2 Diffusion modeling of ATP signaling suggests a partially re- generative mechanism underlies astrocyte intercellular calcium waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Materials and Methods . . . . . . . . . . . . . . . . . . . 22 2.3.1 Reagents and Cell Cultures . . . . . . . . . . . . 22 2.3.2 Calcium Imaging . . . . . . . . . . . . . . . . . . 22 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Model Description . . . . . . . . . . . . . . . . . . 23 vi 2.4.2 A fully regenerative diffusion model cannot repro- duce experimentally measured data . . . . . . . . 26 2.4.3 A partially regenerative diffusion model produced spatiotemporally realistic propagating waves . . . 30 2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 3 Amyloid-β directly induces spontaneous calcium transients, delayed intercellular calcium waves, and gliosis in rat cortical astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Materials and Methods . . . . . . . . . . . . . . . . . . . 45 3.3.1 Astrocyte Cell Culture . . . . . . . . . . . . . . . 45 3.3.2 Calcium Imaging . . . . . . . . . . . . . . . . . . 46 3.3.3 Quantification of Ca2+ Transients . . . . . . . . . 47 3.3.4 GFAP and S100B Immunocytochemistry . . . . . 48 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 Aβ increases the frequency of intracellular cal- cium transients and the number of activated as- trocytes . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 Aβ induces spontaneous time-delayed intercellu- lar calcium waves in astrocytes . . . . . . . . . . . 51 3.4.3 Aβ induces changes in S100B and GFAP expres- sion in astrocytes by 12h . . . . . . . . . . . . . . 52 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Chapter 4 A nucleation phenomenon can theoretically explain the dy- namics of intrercellular calcium waves in astrocytes under nor- mal and Alzheimer’s like conditions . . . . . . . . . . . . . . . 59 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.1 Calcium induces calcium release from the ER . . 64 4.3.2 IP is generated through metabotropic GPCR 3 cascades . . . . . . . . . . . . . . . . . . . . . . . 66 4.3.3 ATP diffuses through the media, degrades, and is ejected by excited cells . . . . . . . . . . . . . . . 68 4.3.4 Parameters . . . . . . . . . . . . . . . . . . . . . 69 4.3.5 Model simulations . . . . . . . . . . . . . . . . . . 71 4.4 Results and discussion . . . . . . . . . . . . . . . . . . . 72 4.4.1 Nucleation of IP R activity at the whole cell level 3 leads to a critical threshold shift in calcium ex- citability . . . . . . . . . . . . . . . . . . . . . . . 72 vii 4.4.2 Intracellular calcium transients and oscillations . . 73 4.4.3 Intercellular calcium waves . . . . . . . . . . . . . 74 4.4.4 Potential new targets in AD signaling cascades . . 78 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Chapter 5 Computational efficiency of fractional diffusion using adaptive time step memory . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.1 Gru¨nwald-Letnikov formulation and simplification 85 5.2.2 Discretization . . . . . . . . . . . . . . . . . . . . 87 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.1 Diffusion simulation examples . . . . . . . . . . . 88 5.3.2 Adaptive Memory Method . . . . . . . . . . . . . 89 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Chapter 6 Method for Decreasing the Memory Footprint of Fractional Partial Differential Equations . . . . . . . . . . . . . . . . . . 97 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.1 Mathematical Implementation . . . . . . . . . . . 101 6.2.2 Computer implementation . . . . . . . . . . . . . 102 6.2.3 Linked List Implementation . . . . . . . . . . . . 104 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Chapter 7 Using a Smart Adaptive History Mesh for Improving Compu- tational Efficiency of Fractional Order Differential Equations . 106 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.2.1 Basic discretization . . . . . . . . . . . . . . . . . 108 7.2.2 Approximating the discrete Gru¨nwald-Letnikov series as a continuous time integral . . . . . . . . 109 7.2.3 Extension of ψ(γ,m) to the positive real domain . 110 7.2.4 Choosing the adaptive history mesh and dropping points in the history . . . . . . . . . . . . . . . . 116 7.2.5 Preliminary Results . . . . . . . . . . . . . . . . . 116 Appendix A AstroTracker - image segmentation software for in vivo astro- cyte calcium imaging . . . . . . . . . . . . . . . . . . . . . . . 121 A.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . 122 A.2 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . 126 A.2.1 FollowAstCa.m . . . . . . . . . . . . . . . . . . . 126 A.2.2 astfind.m . . . . . . . . . . . . . . . . . . . . . . . 129 viii A.2.3 Stack2compAVI.m . . . . . . . . . . . . . . . . . 133 Appendix B Future Studies on IP3RKO mouse . . . . . . . . . . . . . . . . 136 B.1 IP RKO mouse line . . . . . . . . . . . . . . . . . . . . . 137 3 Appendix C Issues in determining neuronal voltage from neuronal calcium 138 C.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 139 C.1.1 Neuronal spiking is commonly defined as the fun- damental information processing unit in the brain 139 C.1.2 Methods to observe neuronal activity . . . . . . . 140 C.1.3 Models . . . . . . . . . . . . . . . . . . . . . . . . 142 C.1.4 Testing the deconvolution algorithm . . . . . . . . 144 Appendix D Novel method for neuronal network patterning . . . . . . . . . 151 D.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 D.1.1 Surface preparation . . . . . . . . . . . . . . . . . 152 D.1.2 Astrocyte Cell Culture . . . . . . . . . . . . . . . 153 D.1.3 GFAP and S100B Immunocytochemistry . . . . . 154 D.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 ix
Description: