ebook img

Cage-based Performance Capture PDF

148 Pages·2014·5.347 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cage-based Performance Capture

Studies in Computational Intelligence 509 Yann Savoye Cage-based Performance Capture Studies in Computational Intelligence Volume 509 Series Editor J. Kacprzyk, Warsaw, Poland For furthervolumes: http://www.springer.com/series/7092 Yann Savoye Cage-based Performance Capture 123 Dr. YannSavoye Lyon France ISSN 1860-949X ISSN 1860-9503 (electronic) ISBN 978-3-319-01537-8 ISBN 978-3-319-01538-5 (eBook) DOI 10.1007/978-3-319-01538-5 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013949253 (cid:2)SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful beyond measure. It is our light, not our darkness that most frightens us. [...] Your playing small does not serve the world. There is nothing enlightened about shrinking so that other people won’t feel insecure around you. We are all meant to shine, [...]. It’s not just in some of us; it’s in everyone. And as we let our own light shine, we unconsciously give other people permission to do the same. As we are liberated from our own fear, our presence automatically liberates others. Marianne Williamson A Return to Love: Reflections on the Principles of a Course in Miracles Acknowledgments The armadillo and horse models are courtesy of Stanford University. The crane, handstand, and samba mesh sequences datasets are courtesy of MIT Adobe. Cited figures are copyrighted by corresponding authors and publishers (please see associated references as copyright notice). vii Contents 1 General Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Research Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 From Real-World to Vision-based Animation. . . . . . . . . 3 1.1.2 High-Level Research Directions . . . . . . . . . . . . . . . . . . 4 1.1.3 Domains of Application. . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 The Problem: Non-rigid Parametrization for Video-based Animation. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Motivation, Objectives and Novelty. . . . . . . . . . . . . . . . . . . . . 10 1.4 Major Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Our Original Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Thesis Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Sparse Constraints Over Animatable Subspaces . . . . . . . . . . . . . . 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Related Works on Interactive Deformable Surface. . . . . . . . . . . 19 2.2.1 Deformable Models. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Surface-based Parameterization. . . . . . . . . . . . . . . . . . . 21 2.2.3 Skeleton-based Parameterization. . . . . . . . . . . . . . . . . . 22 2.2.4 Space-based Parameterization. . . . . . . . . . . . . . . . . . . . 23 2.2.5 Cage-based Parameterization . . . . . . . . . . . . . . . . . . . . 24 2.3 Our Approach: Cage-based Shape Inverse kinematics . . . . . . . . 28 2.3.1 Laplacian-based Mean-Value Cage . . . . . . . . . . . . . . . . 30 2.3.2 Dual-Laplacian Surface Regularization . . . . . . . . . . . . . 33 2.3.3 Screen-space Surface Constraints . . . . . . . . . . . . . . . . . 34 2.3.4 Indirect Dual-Laplacian Cage-based Fitting . . . . . . . . . . 36 2.3.5 Experimental Results and Evaluation. . . . . . . . . . . . . . . 38 2.3.6 A Mathematical Study. . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4 Beyond the Cage: A Generalization to Skeletal Structures . . . . . 42 2.4.1 Differential Skeletal Editing. . . . . . . . . . . . . . . . . . . . . 43 2.4.2 Rigidity-Breaking Skeletal Optimization . . . . . . . . . . . . 43 2.4.3 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ix x Contents 3 Reusing Performance Capture Data . . . . . . . . . . . . . . . . . . . . . . . 53 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 Related Works from Capture to Re-Use of Dynamic Surfaces. . . 55 3.2.1 Acquiring Surface in Motion . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Performance Capture Reuse . . . . . . . . . . . . . . . . . . . . . 61 3.3 Our Approach: Cage-based Animation Fitting. . . . . . . . . . . . . . 65 3.3.1 Non-rigid Dynamic Shape Analysis. . . . . . . . . . . . . . . . 65 3.3.2 Cage-based Conversion from Performance Mesh Animation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.3 Estimation of Space-Time Cages for Non-rigid Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.4 Experimental Results and Video-based Evaluation . . . . . 71 3.4 Beyond the Cage: Animation Cartoonization. . . . . . . . . . . . . . . 77 3.4.1 Foundation of Animation Cartoonization . . . . . . . . . . . . 77 3.4.2 Cartoonization of Multi-View Data. . . . . . . . . . . . . . . . 78 3.4.3 Space-Time Exaggerating of Life-Like Surfaces. . . . . . . 80 3.4.4 Depicting Video-Infused Appearance. . . . . . . . . . . . . . . 84 3.4.5 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Toward Non-rigid Dynamic Cage Capture . . . . . . . . . . . . . . . . . . 93 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 Related Works from Reconstruction to Registration. . . . . . . . . . 96 4.2.1 Image-based Shape Reconstruction . . . . . . . . . . . . . . . . 96 4.2.2 Non-rigid Shape Registration . . . . . . . . . . . . . . . . . . . . 101 4.3 Our Approach: Handle-Aware Detached Registration. . . . . . . . . 108 4.3.1 Non-rigid Registration Setup . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Target Point-Clouds Reconstruction . . . . . . . . . . . . . . . 109 4.3.3 Normal-Guided Pairwise Correspondences. . . . . . . . . . . 113 4.3.4 Iterative Elasto-Plastic Optimization . . . . . . . . . . . . . . . 115 4.3.5 Weight-Control Update Rules. . . . . . . . . . . . . . . . . . . . 119 4.3.6 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4 Beyond The Cage: Toward Captured RGB-Images . . . . . . . . . . 123 4.5 Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 Overall Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.3 Perspectives and Future Directions . . . . . . . . . . . . . . . . . . . . . 141 Chapter 1 General Introduction A s an introduction to this book, we provide a general overview concerning the reusabledigitalizationofcapturedanimation:fromcapturingthereal-worldto editing of video-based animation. In particular, we present and discuss a concise statementconcerningtheproblemofnon-rigidparametrizationforvideo-basedcap- tured animation. To enforce the importance of this problem, we demonstrate the impactofthisresearchareabythevariousdomainsofapplication.Inaddition,we clearly exhibit the motivations, objectives, and difficulties of the tackled class of problems.Hence,weyetuncoveraresearchroadmapofourapproachandoriginal contributionstoalleviatethisproblem.Finally,wedrawthechapters’organization forthisbook. 1.1 ResearchContext FortyYears.OverfortyyearshavebeenrequiredinthefieldofComputerGraphics andComputerVisiontobematureenoughfromthefirstuseofcomputer-generated threedimensionalgraphicalmodel(asseeninthemovieFutureWorldin1976),tothe firstaccomplishedphotorealistic3Dmovie(asseeninthemovieAvatar in2009). There is no doubt that Computer-based Imagery Technologies have significantly influencedandchangedmodernsociety,andhaveasignificantimpactonoureveryday lifeoverthelasttwodecades.Inthepast,technologyhasmadeenormousleapsin termofpowerandavailability.Moreprecisely,tremendoustechnologicalprogress ledtoaffordableCPUcomputationpowerinrecentyears.Memoryandgraphiccards haveboostedthegenerationofsynthesisimages.Intheeraofcomputers,theadvent oftechnologieshasenablednewpossibilitiesinrendering,animation,modelingand real-timewhole-bodyinteraction(seecontrastbetweenFigs.1.1and1.2). Strong Duality. On the one hand, Computer Graphics techniques deal with the designofcomputermodelsorrepresentationinordertoproducehigh-qualityimages. On the other hand, Computer Vision tools are able to extract information from Y.Savoye,Cage-basedPerformanceCapture, 1 StudiesinComputationalIntelligence509,DOI:10.1007/978-3-319-01538-5_1, ©SpringerInternationalPublishingSwitzerland2014

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.