ebook img

C37.102-1995 (R IEEE Guide for AC Generator Protection) PDF

120 Pages·2001·2.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview C37.102-1995 (R IEEE Guide for AC Generator Protection)

IEEE Std C37.102-1995 (Revision of IEEE Std C37.102-1987) IEEE Guide for AC Generator Protection Sponsor Power System Relaying Committee of the IEEE Power Engineering Society Approved 12 December 1995 IEEE Standards Board Abstract: A review of the generally accepted forms of relay protection for the synchronous gener- ator and its excitation system is presented. This guide is primarily concerned with protection against faults and abnormal operating conditions for large hydraulic, steam, and combustion-turbine generators. Keywords: ac generator protection, relay protection, synchronous generator The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA Copyright ' 1996 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 1996. Printed in the United States of America. ISBN 1-55937-711-9 No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have expressed an interest in partici- pating in the development of the standard. Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, mar- ket, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and com- ments received from users of the standard. Every IEEE Standard is subjected to review at least every (cid:222)ve years for revision or reaf(cid:222)rmation. When a document is more than (cid:222)ve years old and has not been reaf(cid:222)rmed, it is reasonable to conclude that its contents, although still of some value, do not wholly re(cid:223)ect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard. Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership af(cid:222)liation with IEEE. Suggestions for changes in docu- ments should be in the form of a proposed change of text, together with appropriate supporting comments. Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to speci(cid:222)c applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appro- priate responses. Since IEEE Standards represent a consensus of all concerned inter- ests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason IEEE and the members of its technical com- mittees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. Comments on standards and requests for interpretations should be addressed to: Secretary, IEEE Standards Board 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855-1331 USA IEEE Standards documents are adopted by the Institute of Electrical and Electronics Engineers without regard to whether their adoption may involve patents on articles, materials, or processes/ Such adoption does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the standards documents. Introduction (This introduction is not part of IEEE Std C37.102-1995, IEEE Guide for AC Generator Protection.) IEEE Std C37.102 was initially published in 1987. It was subsequently reaf(cid:222)rmed in 1990. The guide is designed for the protection of typical stream, hydraulic, and combustion-turbine generators. Any scheme that is judged to be a good alternative practice for generator protection is included in the guide. New schemes that have gained acceptance and usage have been added to the guide. In the revision of IEEE Std C37.102-1987, several areas were improved. Among the most notable are as follows: (cid:209) The protection of generators for inadvertent energizing has been updated and includes new, widely used schemes. (cid:209) The voltage transformers clause has been changed to improve the description of ferroresonance pre- vention and the addition of two schemes that use current limiting resistors. (cid:209) A gas turbine protection scheme and power transformer protection through mechanical fault detec- tion have been added to the guide. (cid:209) The guide has been revised to align with IEEE Std C37.101-1993, IEEE Guide for Generator Ground Protection. (cid:209) The tripping modes described in clause 6 have been rewritten to re(cid:223)ect the current industry practices. (cid:209) The references and bibliography have been updated. Text and (cid:222)gures have been generally revised for improved readability and technical enhancement. (cid:209) The generator motoring protection has been revised to remove those devices used for control logic purposes rather than protection purposes. (cid:209) The synchronizing subclause has been expanded to include more details on acceptable synchronizing limits. At the time this guide was completed, the Revision of AC Generator Protection Guide Working Group had the following membership: William P. Waudby, Chair Hardy J. King, Vice Chair T. R. Beckwith R. W. Haas G. R. Nail W. A. Elmore W. Hartmann A. C. Pierce E. C. Fennell R. Hedding P. W. Powell D. J. Finley J. Horwath V. Rebbapragada J. D. Gardell K. C. Kozminski D. W. Smaha M. R. Gonzalez S. Mazumdar C. L. Wagner C. H. Grif(cid:222)n C. J. Mozina M. Yalla The following persons were on the balloting committee: Mark Adamiak E. C. Fennell K. K. Mustaphi John Appleyard C. W. Fromen George R. Nail E. A. Baumgartner Jonathan D. Gardell B. D. Nelson Barbara L. Beckwith Jeffrey G. Gilbert G. C. Parr R. W. Beckwith A. T. Giuliante Robert D. Pettigrew G. Benmouyal S. E. Grier Arun G. Phadke David C. Blackburn, Jr. Edward M. Gulachenski Alan C. Pierce John Boyle E. A. Guro John M. Postforoosh B. Bozoki R. W. Haas M. S. Sachdev James A. Bright R. E. Hart Evan T. Sage J. Burnworth Irwin Hasenwinkle Miriam P. Sanders H. J. Calhoun C. F. Henville James E. Stephens Carlos H. Castro J. W. Hohn W. M. Strang Thomas W. Cease J. D. Huddleston M. J. Swanson John W. Chadwick, Jr. J. W. Ingleson Richard P. Taylor S. R. Chano J. A. Jodice James Teague Graham.Clough Edward W. Kalkstein John T. Tengdin Stephen P. Conrad Mladen Kezunovic James S. Thorp Mark W. Conroy K. J. Khunkhun Demetrios A. Tziouvaras Carey J. Cook W. C. Kotheimer Joe T. Uchiyama Albert N. Darlington P. A. Kotos E. A. Udren Douglas C. Dawson John R. Linders Vid. Varneckas R. W. Dempsey W. J. Marsh, Jr. Charles L. Wagner C. L. Downs J. E. McConnell William P. Waudby Paul R. Drum M. J. McDonald Thomas E. Wiedman Lavern L. Dvorak J. L. McElray P. B. Winston Walt Elmore M. Meisinger K. Zimmerman A. Elneweihi William M. Mello J. A. Zipp J. Esztergalyos G. L. Michel Stan Zocholl H. G. Farley R. J. Moran John A. Zulaski Charles J. Mozina When the IEEE Standards Board approved this standard on 12 December 1995, it had the following membership: E. G. (cid:210)Al(cid:211) Kiener, Chair Donald C. Loughry, Vice Chair Andrew G. Salem, Secretary Gilles A. Baril Jim Isaak Marco W. Migliaro Clyde R. Camp Ben C. Johnson Mary Lou Padgett Joseph A. Cannatelli Sonny Kasturi John W. Pope Stephen L. Diamond Lorraine C. Kevra Arthur K. Reilly Harold E. Epstein Ivor N. Knight Gary S. Robinson Donald C. Fleckenstein Joseph L. Koep(cid:222)nger* Ingo R=FCsch Jay Forster* D. N. (cid:210)Jim(cid:211) Logothetis Chee Kiow Tan Donald N. Heirman L. Bruce McClung Leonard L. Tripp Richard J. Holleman Howard L. Wolfman *Member Emeritus Also included are the following nonvoting IEEE Standards Board liaisons: Satish K. Aggarwal Steve Sharkey Robert E. Hebner Chester C. Taylor Rochelle L. Stern IEEE Standards Project Editor Contents CLAUSE PAGE 1. Overview..............................................................................................................................................1 1.1 Scope............................................................................................................................................1 1.2 Description of the guide...............................................................................................................1 2. References............................................................................................................................................2 3. Description of generators, excitation systems and generating station arrangements...........................3 3.1 Generator winding design and arrangements...............................................................................3 3.2 Generator grounding....................................................................................................................4 3.3 Excitation systems.......................................................................................................................7 3.4 Generating station arrangements................................................................................................10 4. Protection requirements.....................................................................................................................14 4.1 Generator stator thermal protection...........................................................................................14 4.2 Field thermal protection.............................................................................................................17 4.3 Generator stator fault protection................................................................................................20 4.4 Generator rotor (cid:222)eld protection.................................................................................................46 4.5 Generator abnormal operating conditions..................................................................................51 4.6 System backup protection..........................................................................................................72 4.7 Generator breaker failure protection..........................................................................................76 4.8 Excitation System Protection.....................................................................................................79 4.9 Power transformer protection through mechanical fault detection............................................81 5. Other protective considerations.........................................................................................................82 5.1 Current transformers..................................................................................................................82 5.2 Voltage transformers..................................................................................................................83 5.3 Protection during start-up or shut-down....................................................................................87 5.4 Inadvertent energizing................................................................................................................90 5.5 Subsynchronous resonance........................................................................................................93 5.6 Transmission line reclosing near generating stations................................................................94 5.7 Synchronizing ...........................................................................................................................85 6. Protection speci(cid:222)cation......................................................................................................................96 6.1 Protective arrangements.............................................................................................................96 6.2 Protective functions....................................................................................................................97 ANNEX A (informative) Bibliography...................................................................................................................110 v IEEE Guide for AC Generator Protection 1. Overview 1.1 Scope sihT noitacilppa ediug rof eht yaler noitcetorp fo suonorhcnys srotarenegstneserp yllareneg eht fo weiver a detpecca dna syaler fo esu eht sezirammus tI .metsys noitaticxe sti dna rotareneg eht rof noitcetorp fo smrof ,secived dna sevres sa a ediug rof eht noitceles fo tnempiuqe ot niatbo etauqeda .noitcetorp ehT ediugsi primarily concerned with protection against faults and abnormal operating conditions for large hydraulic, steam, and combustion-turbine generators. esuaceb tluciffid si ezis enihcam no noitcetorp rotareneg gnisaB the naht metsys rewop eht ot rotareneg eht fo ecnatropmi eht yb erom denimreted eb yam noitcetorp derised yb e hetzi. srfoot aerhetneg The recommendations made pertain to typical generator installations. However, sufficient background information relating to protection requirements, applications, and setting philosophy is given to enable the redaer ot etaulav eeht deen ot tceles dna yl penploabiattcieut sorropf .tssnoomitautis The -rossecorporcim lanoitcnuf-itlum a htiw detnemelpmi eb yam ediug siht ni dessucsid snoitcnuf evitcetorp desab noitcetorp metsys latigid( .)metsys ehT noitcetorp ,yhposolihp ,secitcarp dna stimil erayllaitnesse identical to those of the implementation using discrete component relays. The algorithms used to perform emos eht ,revewoH .noitcetorp retteb ro lauqe ecudorp dluohs tub ,tnereffid eb yam snoitcnuf noitcetorp eht fo ecnamrofrep dna ytilibapac yam eb roirepus gnisueht esnopser ycneuqerf devorpmi sa hcus smetsys latigid (bandwidth) and thresholds (pickup settings). Other additional features that enhance the functionality may .sm eltas t y eiesmsgloeibrhdaft leibava This ybdnatS .noitautis yreve ni srotareneg lla fo stnemeriuqer evitcetorp eht liated ot troprup ton seod ediug .de dyulllcax cesir f oeiytrcc aaenerp esesdgunnreaegme 1.2 Description of the guide Clause 3: Description of generators, excitation systems, and generating station arrangements. esualC3 presents a brief description of typical generator design and connections, generator grounding practices, excitation systems design, and generating station arrangements. The intent of this clause is to present information that affects the protection arrangement and selection of protective relays. eseht no stluaf dna noitareposim fo stcapmi evitagen elbissopA eht dna refsnart metsys yrailixua fo noissucsid smetsys si ton dedulcni ni siht.esualc The methods employed for grounding and fusing the secondary circuits of voltage transformers and the sdohtem installations.all for same the generally not are circuits secondary current-transformer grounding for 1 EEEI 5991-201.73C dtS IGEUEFIEOD RE roF this reason, no secondary fuses or ground points are indicated in the figures throughout this guide. ,revewoH EEEI htiw ecnadrocca ni dednuorg eb dluohs stiucric yradnoces remrofsnart egatlov dna tnerruc lla Std C57.13.3-1983. 1 Clause 4: Protection requirements. esualC 4 y lsfeebiirrbcs eedh tgni gsatmcaedffe fo stluaf dnalamronba gnitarepo snoitidnoc dna eht epyt fo secived dnarieht A .snoitidnoc eseht tceted ot desu ylnommoc sgnittes clear deen eht gnitaulave ni redaer eht tsissa lliw srotareneg no seitilamronba fo stceffe eht fo gnidnatsrednu for, and the means of, obtaining adequate generator protection in any specific situation. Clause 5: Other protective considerations. esualC 5 stneserp a noissucsi dfo rehto smrof f onoitcetordpna factors that may be considered in the generator zone. Clause 6: Protection specifications. Clause 6 presents detailed tabulations and diagrams that are classified according wohs smargaid dna selbat esehT .metsys eht ot detcennoc si rotareneg eht hcihw yb dohtem eht ot the combination of relays (and their control function) often applied for generator and excitation system noitcetorp in accordance with good engineering practices. These tables and diagrams also consider the evitcetorp tuhs ro pirt ot detcennoc era taht noitats gnitareneg eht ot tnecajda ro ni tnempiuqe rehto no secived down the generator. 2. References This era sdradnats gniwollof eht nehW .snoitacilbup gniwollof eht htiw noitcnujnoc ni desu eb llahs dradnats dedesr eypbus ,ndnaeovios r iepnvhpoetair slilva.ehyrslppa ISNA C50.12-1982 (Reaff 1989), American National Standard Requirement for Salient-Pole Synchronous Generators and Generator/Motors for Hydraulic Turbine Applications. 2 ISNA C50.13-1989, American National Standard Requirement for Rotating Electrical Machin- .ls arscou itorranodrotneroinhRlecyGnCy—Syre IEEE Std 67-1990, IEEE Guide for Operation and Maintenance of Turbine Generators (ANSI). 3 IEEE Std 142-1991, IEEE Recommended Practice for Grounding of Industrial and Commercial Power .)IS NsAm(etsyS IEEE -tinU deleuF-lissoF fo lortnoC dna ,gnikcolretnI ,noitcetorP rof ediuG EEEI ,)2991 ffaeR( 5891-205 dtS detcennoC maetS snoitatS.)ISNA( IEEE Std C37.101-1993, IEEE Guide for Generator Ground Protection (ANSI). IEEE gnitareneG rewoP rof noitcetorP ycneuqerF-lamronbA rof ediuG EEEI ,)2991 ffaeR( 7891-601.73C dtS Plants (ANSI). IEEE Std C57.13-1993, IEEE Standard Requirements for Instrument Transformers (ANSI). 1 nrooiFtamro f,nnsoiecner eefeesr esualc.2 2ISNA ,teertS dn24 tseW 11 ,etutitsnI sdradnatS lanoitaN naciremA ,tnemtrapeD selaS eht morf elbaliava era snoitacilbup , ,,. rwk 6AhoerY3StoNoN0U3lY01F1 3EEEI publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box , 1,.3yA3aS1 wU-Ja 5Nt,5a18c38s30i1P 2 EEEI ACG ENERATORP ROTECTION 5991-201.73C dtS IEEE SecondaryTransformer Instrument of Grounding the for Guide IEEE 1991), (Reaff C57.13.3-1983 Std Circuits and Cases (ANSI). IEEE ,smetsyS ytilitU lacirtcelE ni gnidnuorG lartueN fo noitacilppA eht rof ediuG EEEI ,9891-2.29.26C dtS gtnriadPnuorG —fsIou Iornootra hrscemnneyetSGs.y)SISNA( 3. Description of generators, excitation systems, and generating station arrangements 3.1 Generator winding design and arrangements The nrut-itlum ro nrut-elgnis fo rebmun a fo tsisnoc rotareneg suonorhcnys esahp-eerht a fo sgnidniw rotats slioc that are connected in a series to form a single-phase circuit. One of these circuits or several circuits detcennoc detcennoc yllamron era sgnidniw esahp ehT .gnidniw esahp etelpmoc a mrof ot desu era lellarap ni desu era sgnidniw esahp detcennoc-atleDi .ecnadnepmi lanretxe emos hguorht dednuorg lartuen eht htiw eyw y ltsluiabhntoisacco is not a common connection. Figure 3.1 illustrates the possible winding arrangements and connections. The lla rof desu ylnommoc tsom snoitarugifnoc eht era )b dna )a1.3 serugif ni nwohs stnemegnarra gnidniw lliw stiucric eseht ,)b1.3 erugif ni nwohs sa esahp rep desu si tiucric eno naht erom nehW .srotareneg fo sepyt eb connected in parallel inside the machine with two leads being brought out to external connections. In general, utp to h receu rrenttr ansformercsa bnpe r ovideadet a cehn odtf h peh aswei ndinfgo rre layinagn d instrumentation purposes. fo tsisnoc yam tiucric hcae dna esahp rep stiucric fo rebmun a eb yam ereht ,sngised rotarenegordyh emos nI a number of multi-turn coils connected in series. In these machines, the parallel-connected circuits may be demrof into two groups that are paralleled with only two leads being brought out to external connections. There cantransformers current design, this In group. each in circuits of number unequal or equal an be may be provided in each phase group and in the leads to the external connections. Figure enibrut-maets egral ni desu semitemos noitcurtsnoc gnidniw-elbuod detcennoc-eyw eht setartsulli )c1.3 generators. .snoitcennoc eyw owt mrof ot yllanretxe detcennoc era taht sgnidniw etarapes owt sah esahp hcaE The high-voltage terminals of each phase are connected in parallel to form a single three-phase output. ds en emonrrioaeot hfcet etenaynrwoacpeS yllacisyhp eb yam slartuen esehT .gnidniw hcae fo dne lartuen at opposite ends of the machine. This arrangement is sometimes referred to as the double-ended, twelve- bushing machine and is used where ccufarcucrteralutropxeplrhythcna-reiaaetbtle nlse ihong edleat si d t y of a single bushing. The bushings at each end of the winding can accomcmtut ohrrdrraaeentense tf ormers. In the delta-connected generator, there may be one or more paralleled circuits per phase with two leads hcae fo sdne eht ta ,atled eht edisni dedivorp eb nac sremrofsnart tnerruC .snoitcennoc lanretxe ot tuo thguorb winding, or outside the delta, or both. 3.2 Generator grounding It is common practice to ground all types of generators through some form of external impedance. The esoprup of this grounding is to limit the mechanical stresses and fault damage in the machine, to limit transient voltages during faults, and to provide a means for detecting ground faults within the machine. A etelpmoc noissucsid fo lla gnidnuorgdna dnuorg noitcetorp sdohtem yam eb dnuof ni EEEI dtS-2.29.26C 1989 and IEEE Std C37.101-1993. 3 EEEI 5991-201.73C dtS IGEUEFIEOD RE Figure 3.1—Winding configurations The sdohtem tsom ylnommoc desu rof rotareneg gnidnuorg lliw eb dessucsid ni siht .ediug yehT eradetsil :s egni nir ri oduwegaooheoflttrlabocf a) High-impedance grounding )b ecnatsiser-woLgnidnuorg )c Reactance grounding d) Grounding-transformer grounding 4 EEEI ACG ENERATORP ROTECTION 5991-201.73C dtS diloS lacinahcem hgih ni tluser nac ecitcarp siht ecnis desu yllareneg ton si lartuen rotareneg a fo gnidnuorg sesserts sesserts mumixam eht ,9891-31.05C ISNA ot gnidroccA .enihcam eht ni egamad tluaf evissecxe dna that a g eneratori sn ormallyd esignedt ow ithstandi st hata ssociatedw itht hec urrentso fa t hree-phasef ault at eht enihcam .slanimret esuaceB fo eht ylevitaler wol ecneuqes-orez ecnadepmi tnerehni nitsom suonorhcnys currentswinding produce will terminals machine the at fault phase-to-ground solid a generators, that are higher than those for a three-phase fault. Therefore, to comply with this guide, generators shall be grounded msiauannc lnh tie omrt mi hatex impuhma se-to-groufnaduc lutrm raaegt nnoti tuedqeut oaorl, less than, the three-phase fault current. Generators phase-ttfhoae-lu gilgrmtaroipeutpansrtd ol tayhuc oinhpsg We rhrooiaufltnteede den d n.o t are currents, traophnvriseogirdhevcu nodactlune tr amiganiecgtsh t ihnceeo ,n staedonqla duim emanigttels y faults and also makes the fault location difficult to determine. The gniwollof sesualcbus edivorp a yrev feirb noitpircsed dna lacipyt snoitacilppa fo eht evobagnidnuorg methods. 3.2.1 High impedance grounding Two types of high-impedance grounding are in common use today as discussed in 3.2.1.1 and 3.2.1.2. 3.2.1.1 High-resistance grounding In this method, a distribution transformer is connected between the generator neutral and ground, and a resistor yllausu si remrofsnart noitubirtsid eht fo gnitar egatlov yramirp ehT .yradnoces eht ssorca detcennoc si equal to, or greater than, rated generator line-to-neutral voltage, while the secondary winding rating is 120 V or 240 V. The secondary resistor is selected so that for a single-phase-to-ground fault at the generator terminals, the power dissipated in the resistor is equal to, or greater than, three times the zero-sequence eviticapac eht ot detcennoc eb yam taht tnempiuqe rehto lla fo dna ,sgnidniw rotareneg eht fo dnuorg ot AVk machine terminals. With this resistor rating, the transient overvoltages during faults will be kept to safe .seulav cosniahsnriigrgdlahiTeen-shr-gtr aiepehe sdhmes g aeirsnsoetFtua- o anttrnd o cfi-eang ugrl.ot u nd machine terminals, the primary fault current will de toeit bm eiau lln e aieg tvhnfutaoo rb3a A ot 52 .AfI ,elbissop fo )desu nehw( sesuf yramirp eht htiw etanidrooc ot nesohc eb dluohs level tnerruc tluaf dnuorg eht eyw-eyw connected voltage transformers with grounded neutrals. Note that distribution transformers with internal fuses or circuit gnidnuor geh tdn anep oe byltnetrevdan idluo cyeh ts a,des ue bto ndluoh ssrekaer b dnnoait ceemteohrc psdluoc eevbitarep otnai eht emit fo.tluaf In some cases, the distribution transformer is omitted and a high value of resistance is connected directly neewteb the generator neutral and ground. The resistor size is selected to limit ground-fault current to the range of 3–25 A. While this method of grounding is used in Europe, the physical size of the resistors, the required resistor insulation level, and the cost may preclude the use of this method. 3.2.1.2 Ground fault neutralizer grounding (tuned inductive reactor) In this grounding method, a distribution-type transformer with a ratio selected as above is used with a yradnoces otni detcelfer nehw ,taht os detceles si rotcaer yradnoces siht fo eulav cimho ehT .rotcaer elbanut the primary circuit, its reactance is equal to one-third of the zero-sequence capacitive reactance of the generator and all equipment connected to the generator terminals up to and including the delta-connected windings -esahp-elgnis eht stimil gnidnuorg fo epyt sihT .sremrofsnart ecivres noitats dna pu-pets niam eht fo to-ground fault current to 1 A or less. This low fault current will not sustain an arc or cause damage to the generator whereinstallations unit-system all with used be can grounding neutralizer fault Ground iron. stator a single generator is connected through its individual grounded wye-delta step-up transformer (or )sremrofsnart ot eht.metsys 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.