Article C Stocks in Forest Floor and Mineral Soil of Two Mediterranean Beech Forests AnnaDeMarco1,AntoniettaFioretto2,MariaGiordano1,MicheleInnangi2,CristinaMenta3, StefaniaPapa2andAmaliaVirzoDeSanto1,* 1 DepartmentofBiology,ComplessoUniversitariodiMonteSant’Angelo,ViaCintia,21,80126Napoli,Italy; [email protected](A.D.M.);[email protected](M.G.) 2 DepartmentofEnvironmental,BiologicalandPharmaceuticalSciencesandTechnologies, SecondUniversityofNaples,ViaVivaldi,43,81100Caserta,Italy;antonietta.fi[email protected](A.F.); [email protected](M.I.);[email protected](S.P.) 3 DepartmentofLifeSciences,UniversityofParma,ViaFarini,90,43124Parma,Italy;[email protected] * Correspondence:[email protected];Tel.:+39-081-679-100or+39-348-353-5925 AcademicEditor:BjörnBerg Received:19May2016;Accepted:16August2016;Published:22August2016 Abstract: ThisstudyfocusesontwoMediterraneanbeechforestslocatedinnorthernandsouthern Italy and therefore subjected to different environmental conditions. The research goal was to understandCstorageintheforestfloorandmineralsoilandthemajordeterminants. Relativetothe northernforest(NF),thesouthernforest(SF)wasfoundtoproducehigheramountsoflitterfall(4.3vs. 2.5Mg·ha−1)andtostorelessCintheforestfloor(~8vs. ~12Mg·ha−1)butmoreCinthemineral soil(~148vs. ~72Mg·ha−1). Newly-shedlitterofNFhadlowerP(0.4vs. 0.6mg·g−1)buthigherN concentration(13vs. 10mg·g−1)thanSF.DespiteitslowerMnconcentration(0.06vs. 0.18mg·g−1), SFlitterproducesaMn-richerhumus(0.32vs. 0.16mg·g−1)thatislessstable. Thedatasuggestthat decompositionintheNFforestfloorislimitedbytheshortergrowingseason(178daysvs. 238days) andthehigherNconcentrationsinnewlyshedlitterandforestfloor. DifferencesinCstockinthe mineralsoilreflectdifferencesinecosystemproductivityandlong-termorganic-matteraccumulation. TheverticalgradientofsolubleandmicrobialfractionsinthesoilprofileofSFwasconsistentwitha fasterturnoveroforganicmatterintheforestfloorandgreaterCaccumulationinmineralsoilrelative toNF.Withreferencetoregional-scaleestimatesfromItalianNationalForestInventorydata,theC stockinthemineralsoilandthebasalareaofItalianbeechforestswerefoundtobesignificantly related,whereasCstockintheforestfloorandCstockinthemineralsoilwerenot. Keywords: litter fall; forest floor; mineral soil; N; P and Mn; GDD (growing degree days); INFI (ItalianNationalForestInventory) 1. Introduction Forests play a key role in mitigating climate change as they may act as carbon sinks [1]. AsubstantialportionofEarthbiospherecarbon(C)isstoredinforestabovegroundandbelowground biomass,deadwoodandsoil,thelastbeingthemajorcarbonstock[2].Factorssuchastreespecies[3–5] andclimate[6],influencethesizeoftheforestsoilCstocks. Commonbeech(FagussylvaticaL.)forests are found in Europe from temperate to mountainous Mediterranean areas with a wide range of climaticconditionsandsoiltypes,andareofutmostimportanceforCsequestrationonacontinental scale. InItaly,beechisthemostcommontreespeciesandisfirst-rankintermsofgrowingstock[7]. The considerable diversity of climatic conditions and soil types in the Italian territory may result indifferencesinbeechlitterchemicalcomposition,whichinturnarelikelytoaffectorganic-matter dynamicsandsoilCstocks. ThesizeoforganicCstockinforestsoilistheresultofthebalancebetween twomainprocesses: theannualinputofCwithlitterfallandCoutputthroughdecomposition. Forests2016,7,181;doi:10.3390/f7080181 www.mdpi.com/journal/forests Forests2016,7,181 2of20 Litterdecompositionprimarilydependsonlitterchemicalcomposition,interactionswithsoil biotacommunity,andsiteproperties[8]. Litterconcentrationofessentialnutrients,suchasnitrogen (N)andphosphorus(P),andlitterstoichiometry(C:nutrientratios)havebeenusedaslitterdecay predictors. The initial litter N concentration has been found to be negatively related to the limit value,i.e.,thestageatwhichdecompositionvirtuallystopsorproceedsveryslowly,thusleadingto humusaccumulationandCsequestration. InPinuslitters,thelimitvalueispositivelyrelatedtoinitial Mnconcentration,whichthereforemaybeusedtopredicttheaccumulationofhumus[9,10]. Mnis importantforlitterdecompositionmainlybecausefungiuseMnperoxidaseforlignindegradation[11]. ThecausalrelationshipbetweenMnconcentrationandlitterdecayhasrecentlybeendemonstrated in a litter bag study using beech litter experimentally enriched in Mn [12]. Litter quality affects not only the rate of litter mass loss, but also nutrient dynamics. During litter decomposition, the nutrientsaretakenupbythemicroorganismsandonlyaftermicrobialdemandhasbeenmetisthe surplusreleasedandmadeavailabletoplants. NandPreleasesarepositivelyrelatedtotheinitial concentrationoftheseelementsandthereforenegativelyrelatedtolitterC:NandC:P,respectively[13]. Climate[14,15]andsitecharacteristics[16]mayinducewithin-speciesdifferencesinlitterchemical compositionandhenceinlitterdecayandthesizeofsoilorganicCstocks. Acrossawideclimatic gradient,NandPconcentrationsofnewly-shedpineneedlehavebeenfoundtobesignificantlyand positivelyrelatedtothemeanannualtemperature(MAT),whileMnconcentrationshowedasignificant negativeexponentialrelationshipswithMAT[17]. Theconcentrationofsomenutrients,e.g.,Mnand Ca, inlitteralsovarieswithsoilpH,whichinfluencestheirmobility[8]. Caccumulationinsoilis affectedbyforestageandproductivity. Asaparameterthatintegratesthenumberandsizeoftrees, basalareaisconsideredagoodpredictorofabovegroundbiomassC[18]. Accordingly,soilCinItalian forestsissignificantlycorrelatedwithabovegroundCstocksandwithbasalarea[4]. Inthelastfewyears,severalstudieshaveinvestigatedsizeandtypesofsoilcarbonpoolsinbeech forestsofcentralEurope[3,19]includingsolubleandmicrobialfractions,whicharebothpivotaltosoil organic-matterformationandaccumulation[20–22]. Verylittleinformationispresentlyavailablefor beechforestsoftheMediterraneanregion[23],inspiteofthefactthatthisisoneoftheworldareas mostdramaticallythreatenedbyclimatechange[24]. Italianbeechforestsarefoundat900–1900maltitudeandaredistributedfromtheAlpstoSicily across two biogeographical regions, the Central-European and the Mediterranean, separated by a boundary running along the Apennines from Northern Liguria to Southern Emilia-Romagna [25]. MeanannualtemperaturesarelowerintheMiddle-EuropeanthanintheMediterraneanbiogeographic region(9–13◦Cvs. 14–18◦C).Beechforestscoverapproximately1,000,000hectares,arepresentin20of Italy’s21administrativeregionsand,accordingtotheItalianNationalForestInventory(INFI),storeat country-scale195.3Mgofcarbonha−1,ofwhich4.5isinlitterand96.6isinsoil[4]. SoilCstockper hectareishigherinbeechforestsintheMediterraneanthanintheCentral-Europeanbiogeographic region(about115vs. 80Mg·ha−1)[26]. EstimatesofregionalCstocksinItalianbeechforestsareinthe rangeof2.1–9.3Mg·ha−1 forlitter,1.2–26.5Mg·ha−1 fororganichorizons,and29.5–171.6Mg·ha−1for mineralsoiluptothefixed30-cmdepth. Suchlargerangesarelikelytoreflectmajorenvironmental constraintsoverforestproductivity,litterquality,litterdecompositionandCaccumulationinsoil. ThispaperpresentsadetailedstudyofsoilCandNstocks,solubleCandNfractions,andthe microbial-biomassCfractionsintheforestfloor-mineralsoilcontinuumoftwobeechforestswith relevantdifferencesinclimaticandedaphicconditions,locatedinnorthernandsouthernApennines (Italy),respectively. WealsofocusedontheamountoflitterfallanditsN,PandMncontents. Nitrogen andParethemostcommonlimitingnutrientsinforestecosystems,[8]. Phosphorusmainlyaffectsthe earlyphaseoflitterdecomposition,whichisdominatedbyfast-growingmicroorganismswithhigh demandsforP[27]. NitrogenandMnareknowntocontrollate-stagesoflitterdecomposition[8,12] andmaycontributetoregulatetheprimarysequestrationofCintheorganiclayer[28]. Theprimary goalofourworkwastounderstandCstorageattheshortandlongtimescaleinanorthernanda southernItalianbeechforest;thus,weinvestigateddifferencesbetweenthetwoforestsforCandN Forests2016,7,181 3of20 stocksinforestfloorandinthemineralsoilandtheputativemajordriversoflitterdecompositionand organic-matterdynamics. Asecondgoalwastocomparetheresultsofourstudywiththepattern, ifany, ofCdistributionintheorganiclayersandmineralsoilofbeechforestsofthewholeItalian territory and their relationship with basal area. To do this, we used the regional-scale estimates reportedbyINFI. 2. MaterialsandMethods 2.1. StudySites The two study sites had similar stand age and management history. They were located in mountainareasofhighenvironmentalrelevance: (a)“GuadinePradaccio”BiogeneticNaturalReserve (Corniglio,PR,Italy)onTosco-EmilianoApennines(henceforthreferredtoasnorthernforest,NF)and (b)Laceno,aninternalpartofRegionalNaturalReserveofMontiPicentini(BagnoliIrpino,AV,Italy), CampaniaApennines(henceforthreferredtoassouthernforest,SF).Thestudysites,withasurface areaofabout3000m2,werecoveredby75-year-oldcoppicedbeechtrees(FagussylvaticaL.)andhad neverbeenaffectedbyfire,grazingorclear-cuttingduringthistimespan(informationprovidedbythe staffofthetwoNaturalReservesandAuthor’scheckofcharcoalremains). Basalarea(BA;m2·ha−1), definedasthesumofcross-sectionalareasatbreastheight(1.3m)ofalltreesinastand,wasobtained bymeasuringthestemdiameteratbreastheight(DBH)onthetreesstandingin10plotsof100m2each. ThesoilwasanUmbricLeptosolsinNFandaHaplicAndosolinSF(FAOSoilClassificationSystem). Data about climatic conditions were obtained from the Meteorological Station of Lagdei (Pradaccio) for NF and the Meteorological Station of Piano Laceno for SF. Temperature data were adjustedforaltituderelativetothelocationofmeteorologicalstations.Thelengthofthegrowingseason wascalculatedasgrowingdegreedays(GDD)i.e.,thenumberofdayswithminimumtemperature over5◦C[29]. 2.2. LitterFallCollection Litterfallfromtreeswascollectedintwoconsecutiveyears(2010and2011)using9circularlitter traps,eachwithasamplingareaof0.5m2,placedunderthecanopyatabout1mabovetheground. Thecollectorwasaloosely-hangingpolyesternetwithameshsizeof5mm×8mm. Thismethod underestimatescertainlitterfractionssuchaslargebranchesandbark[30].Littercollectionwascarried outeverytwoweeksduringtheperiodoflitterfall. Thelitterwasdriedat75◦Cuntilconstantweight andweighedinordertocalculatetheannuallitterinputperunitarea. Samplesoftheleaffraction collectedinthetraps(newly-shedleaves)wereusedtodeterminethelitterchemicalcompositionas describedbelow. 2.3. ForestFloorLitterandMineralSoilSampling Samples of the forest floor litter and underlying mineral soil were collected in autumn 2010 at the peak of litter fall and in Spring 2011 with the recovery of vegetative growth so to include temporalvariationsoftheinvestigatedparameters. Litterandsoilweresampledinsixplotsrandomly selected within the study areas and spaced at least 10 m apart from each other in order to avoid spatialautocorrelation[31]. Ineachplot,forestfloorlitterwascollectedusinga20cm×20cmsteel frame. ThelitterfromtheOLlayer,consistingofplantresidueseasilydiscerniblebynakedeye,was manuallyseparatedfromstronglyfragmentedandamorphousmaterialbelongingtotheOF+OH layer. ThesamplesofOLandOF+OHlayerswereweighedanddriedat75◦Ctoconstantweight. Ineachsamplingplot,thesoilunderlyingtheforestfloorwascollectedbymeansofasteelcore, 4.8cmindiameter,fromthe0to40cmlayer;thesoilcoresweredividedintofoursections,0–5,6–15, 16–30 and 31–40 cm, that were processed separately for chemical analyses after sieving through a 2-mmmesh. Freshsamplesofforestfloorandmineralsoillayerswerestoredat4◦Candusedwithin24hto determinefungalbiomass,microbialbiomassandpotentialmineralization. Forests2016,7,181 4of20 2.4. LitterandSoilAnalyses LitterandsoilpHwasmeasuredbythepotentiometricmethodindistilledwater(1.0/2.5,litteror soil/water). Thewatercontentwasmeasuredgravimetricallybyoven-dryingofsamplesat75◦Cto constantweight. CationExchangeCapacity(CEC)wasdeterminedonthefinefractionaccordingto theprotocolbyMinisterodellePoliticheAgricoleeForestali,Milan,Italy,2000[32]. Soiltexturewas determinedmeasuringparticlesizedistributionbygravitationalliquidsedimentationusingafixed positionpipetteapparatus(protocolbyMinisterodellePoliticheAgricoleeForestali)[32]. Thechemicalcompositionoflitterandmineralsoilwasdeterminedonoven-dried(75◦C)samples powderedbyaFritschPulverisette(type00.502,Oberstein,Germany)equippedwithagatemortarand ballmill. Theorganicmatterconcentration(OM)wasdeterminedasdifferencebetweentheresidual andtheinitialmassofthesampleafterheatingat550◦Cfor2h. OrganicCandNweredetermined by gas chromatography (CNS analyzer—Thermo Finnigan, Flash 112 Series EA Strumentazione, Milan,Italy). Water-solubleorganicmatterwasextractedfromthelitterandmineralsoilaccording toGarcìaetal. (modified)[33]. Oven-driedsamples(0.5gforlitterand20gforsoil)weresoaked indistilledwater(70mLand200mLrespectively)andincubatedfor24hunderstirring(Universal Table-Shaker709,130rpm)withtwosonications. Thewaterextractswerecentrifugedat5000rpmfor 15minandfiltered(WhatmanØ15µm). TheconcentrationsofsolubleCandNwereevaluatedbygas chromatography(CNSanalyzer—ThermoFinnigan,Flash112SeriesEAStrumentazione,Milan,Italy) afterlyophilisationofwaterextracts. TocalculatethesizeofCandNstocksineachlayer(OLandOF+OH)oftheforestfloor,Cand Ncontentpergramofsamplewasmultipliedbythemassofmaterialperunitarea. Asthewhole massofmaterialhadbeendriedatroomtemperature,acorrectionfactorforconvertingairdriedto water-freedrymasswascalculatedusingsubsamplesdriedtoconstantweightat75◦C.Thestocksof CandNinmineralsoilwerecalculatedfromCandNcontentpergramofsamplemultipliedbythe bulkdensityofthecorrespondingsoillayer. Bulkdensitywascalculatedasmass/volumeafterdrying at75◦Csamplescollectedwithacorerofknownvolume. MnandPconcentrationsweredeterminedafterdrymineralizationinamufflefurnaceat480◦C for16h. Asheswererehydratedwith1mL1:3HNO dilutedwith9mLdouble-distilledwater,filtered 3 andthenanalyzedbyinductively-coupledplasmaatomicemissionspectrometry(ICP-AES)without ultrasonicnebulization[34]. 2.5. DeterminationofActiveFungalMycelium,MicrobialCandPotentialMineralization Thehyphallengthofmicrofungiinforestfloorandmineralsoilwasdeterminedbytheintersection methodofOlson[35]. Eachsample(1g)wassuspendedin100mLof60mMphosphatebufferatpH 7.5andhomogenizedat6000rpmfor2min.Aliquots(0.5mL)ofsuspensionwerecollectedandfiltered undervacuumonnitrocellulosefilterwithaporesizeof0.45µm. Membranefilterswereprepared accordingtoSundmanandSivelä[36]andtreatedwithafluoresceindiacetatesolutiontodetectactive fungalmycelium.Thevalueswerereportedasmgdryfungalbiomassg−1organicmatter,assumingan averagehyphalcrosssectionof9.3µm2,adensityof1.1g·mL−1andadrymassof15%[37]. FungalC was calculated from active-mycelium mass on the basis of mean fungal values of C/N ratio [38] and N content [39]. Microbial carbon (Cmic) was evaluated by the method of substrate-induced respiration(SIR)accordingtoAndersonandDomsch[40]basedonthemeasurementofCO evolution 2 fromlitter/soil(25◦C,55%ofwater-holdingcapacity)inresponsetoadditionofglucose,aneasily mineralizablesubstrate. Themagnitudeofrespiratoryresponsewasconvertedtomgofmicrobial biomasscarbonusingtheconversionfactorintroducedbySparling[41]. Potentialmineralizationof litterandsoilsampleswasestimatedasCO evolutionafteradding3mLdistilledwaterto3gof 2 sample[42]. CO evolutionwasmeasuredafterincubation(25◦C,55%ofwater-holdingcapacity)in 2 tightcontainersfor10daysbyNaOHtrappingfollowedbytwo-phasetitrationwithHCl[43]. Forests2016,7,181 5of20 2.6. Statistics Differencesbetweensitesforchemicalcompositionofnewly-shedleavesandforCstockswere assessedbyt-test(overallsignificancelevel=0.05). Two-wayANOVAwasappliedtogetadistinct viewoftheinfluenceofsiteandseasononthevariabilityofsolublefractionsandmicrobialparameters. Pairwisemultiplecomparisonswereperformedbymeansofthepost-hocHolm-Šídákmethod(overall significancelevel=0.05). Simplelinearregressionanalyseswereperformedtoevaluaterelationships amongCstocksoforganicandminerallayersandbasalareaofItalianbeechforestsusingregional scaleestimatesfromtheItalianNFI(NationalInventoryofForestsandforestCarbonpools—INFC). Suchdataareavailableonthewebsite“inventarioforestale.org”. Datawerecheckedfornormalityand heteroscedasticityandwhennecessarylog-transformed. ThestatisticalanalyseswereperformedusingSystat_SigmaPlot_12.2software(JandelScientific, SanJose,CA,USA). 3. Results 3.1. SiteFeatures Thetwositesdifferedformeanannualtemperatureaswellasformeantemperatureofthecoldest andthewarmestmonth,thatwerebothloweratthenorthernsite(Table1). Thelengthofthegrowing seasonwas178and238daysforthenorthernandsouthernsite,respectively(Table1). Asexpected, soilpHwashigheronthesouthernsitewhichcoincidedwiththelargercationexchangecapacity (CEC;Table1). Table 1. Location, climate and soil features of two 75-year-old beech forests in the Apennines mountains(Italy). NorthernForest SouthernForest Latitude/Longitude 43◦23(cid:48)N;10◦01(cid:48)E 40◦48(cid:48)N;15◦07(cid:48)E Altitude(metersabovesealevel) 1350 1150 *Meanannualtemperature(MAT) 6.0◦C 8.7◦C *Meantemperatureofthewarmestmonth(TM) 15.4◦C 17.4◦C *Meantemperatureofthecoldestmonth(Tm) −2.7◦C 0.3◦C *Meanannualprecipitation(MAP) 2900mm 2300mm *Maximummonthlyprecipitation(PM) 415mm 430mm *Minimummonthlyprecipitation(Pm) 42mm 31mm Numberofgrowingdegreedays 178 238 Arenaceous,Lithological Calcareouscoveredby Soilparentalsubstrate formation:Macigno pyroclasticmaterial Soil0–15cmdepth Texture(%): Sand 34.2 29.7 Silt 40.4 47.4 Clay 25.4 22.8 watercontent(%d.w.) 72.4±10.7 78.2±2.6 bulkdensity(g·cm−3) 1.06±0.06 0.99±0.05 organicmattercontent(%) 20.2±1.0 22.8±1.2 CEC(cmol·kg−1) 29.4±3.6 35.7±2.8 pH(H2O) 3.9±0.1 5.6±0.1 N(mg·g−1d.w.) 6.52±1.75 9.38±0.58 P(mg·g−1d.w.) 0.04±0.007 0.16±0.01 C/N 14.7±2.1 12.7±0.7 C/P 3742±348 1118±247 *Observationperiod2008–2013.DataforthesouthernforestfromMeteorologicalStationofPianoLacenoand forthenorthernforestfromMeteorologicalStationofLagdei(Pradaccio)locatedat1110mand1256ma.s.l., respectively.Temperaturedataadjustedforaltitudeandtheactuallocationofmeteorologicalstations.Thevalues forsoilparametersaremean±standarderror;n=36(6samplingplots,2samplingseasons,3replicateanalyses). Forests2016,7,181 6of20 3.2. StandFeatures Thebasalarea(BA)inthenorthernforestwas75%ofthevaluemeasuredforthesouthernforest; thetreedensitywashigherandmeandiameteratbreastheightwassmallerinthenorthernforest (Table2). InlinewithlowerBAvalues,theannuallitterinputtothegroundinthenorthernforestwasonly 58%thatofthesouthernforest. Inbothcases,theleavesaccountedfornearly90%ofthewholelitter massreachingtheforestfloor(Table2).Incontrast,themassofforestfloorlitterwasquitesimilarinthe southernandthenorthernforests,i.e.,21.18vs. 23.89Mg·ha−1(Table2). Theratioorganic-matterstock toorganic-matterinputwas4.9and9.6,respectively,inthesouthernandnorthernforest(Table2). 3.3. Nutrients Newly-shed leaves from the southern forest had higher P content but were poorer in N and Mnrelativetothenorthernforest,withmeanconcentrationsdifferingbyafactorof1.6,1.3and2.3, respectively,forP,N,andMn(Table2,Figure1). Table2. Stand,litterfallandforestfloorfeaturesoftwo75-year-oldbeechforestsintheApennines mountains(Italy). NorthernForest SouthernForest Slope(degree) 13.98◦ 12.13◦ Treedensity(number·ha−1) 1100±55 800±40 Diameteratbreastheight(cm) 25.4±1.3 34.4±2.2 Basalarea(m2·ha−1) 55.7 74.3 Litterinput(Mg·ha−1)(n=9) 2.50±0.18 4.31±0.43 Forestfloorlitterstock(Mg·ha−1) 23.89±2.12 21.18±2.69 Ratiolitterstocktolitterinput 9.6 4.9 Nutrientcontentofnewlyshedleaves(mg·g−1)(n=9) C 472.0±1.45 466.7±0.90 N 13.06±0.05 10.17±0.22 C/N 36 46 P 0.40±0.06 0.62±0.06 Mn 0.14±0.005 0.06±0.001 Nutrientfluxeswithlitterfall(kg·ha−1) N 32.65 43.83 P 1.00 2.67 Mn 0.35 0.26 Mainfeaturesofforestfloorlitter(OLandOF+OH)* pH 5.82±0.10 6.18±0.03 (H2O) watercontent(%d.w.) 191.4±13.0 224.7±21.3 OM(mg·g−1d.w.) 910.1±15.4 728.1±30.9 N(mg·g−1d.w.) 21.21±1.42 15.68±1.27 P(mg·g−1d.w.) 0.18±0.01 0.38±0.03 Mn(mgg−1d.w.) 0.16±0.02 0.25±0.03 C/N 24 32 C/P 2925 1328 C/Mn 3690 2184 C/Ca 53 26 *Thevaluesforsoilparametersaremean±SE;n=36(6samplingplots,2samplingseasons,3replicate analyses)foreachofthetwolayers. Forests2016,7,181 7of20 Forests 2016, 7, 181 7 of 21 Figure 1. Nutrient concentrations in newly‐shed leaves, floor litter (OL and OF + OH layers) and Figure1. Nutrientconcentrationsinnewly-shedleaves,floorlitter(OLandOF+OHlayers)and mineral soil at different depths in a northern and a southern beech forest. Values are means ± standard mineralsoilatdifferentdepthsinanorthernandasouthernbeechforest.Valuesaremeans±standard error; n = 36 (6 sampling plots, 2 sampling seasons, 3 replicate analyses). Different lower‐case letters error;nin=di3ca6te(6 sisganmifipcalinntg dpiffleortesn,c2ess abmetwpleienng ssiteeass (ot‐ntess,t3; orveeprlailcla stiegnainfiaclaynscees l)e.vDeli f=f e0.r0e5n).t lower-caseletters indicatesignificantdifferencesbetweensites(t-test;overallsignificancelevel=0.05). Forest floor in the southern forest had higher P and lower N concentrations relative to the northern counterpart (Figure 1). In both forests, the N content increased whereas the P content Fodreecsrteaflsoeodr firnomth ethseo uOtLh etron OfoFr e+s tOhHa dlahyiegrh, ei.re.P, wanitdh lporwoegrreNssicnogn clietntetrr adteiocanys r(Feilgautirvee 1t)o. tDhieffneroerntht ern countepraptaterrtn(sF iogf uvraeri1a)t.ioInn obfo Mthnf coornecsetsn,trthateioNn wcoenrete fnotunindc rine atsheed twwoh feorreeasstst. hIne tPhec osnoutetnhetrdne fcorreeasst,e Mdnfr om theOLcotoncOenFtr+atOioHn lianycreera,sie.ed. ,5w tiitmhepsr ofrgormes snienwglyli‐tstheerdd elecaavye(sF, itghurorueg1h). tDheif fOerLe ntot pthaett eOrFn s+o OfHva rlaiayteiro, nof Mncowncheenretraas tiito rnemwaeinreedf oviurtnudalilny uthnechtawnogefdo irne sthtse. nIonrtthheernso fourtehset r(Fnigfourree s2t),. MC/nnuctorinencet nrattriaot wioans hinigchreear sed 5timesfromnewly-shedleaves,throughtheOLtotheOF+OHlayer,whereasitremainedvirtually unchangedinthenorthernforest(Figure2). C/nutrientratiowashigherinthenorthernsite,with theexceptionofC/Nthatwashigherinthesouthernsite(Table2). Inthesouthernforest,NandP Forests2016,7,181 8of20 Forests 2016, 7, 181 8 of 21 fluxesiwn tihthe nliottrethrfearnll s(ilteea, fwliitthte trhme eaxscsep×tiolintt oerf Cn/uNtr tiheantt wcoasn cheignhterar tiino nth)ew soeurethlearrng seirte( f(aTcatboler s21).. 3Ina tnhde 2.7, southern forest, N and P fluxes with litterfall (leaf litter mass × litter nutrient concentration) were respectively)whereasMnreturnwassmaller(factor0.7)(Table2). Mineralsoilofthesouthernforest larger (factors 1.3 and 2.7, respectively) whereas Mn return was smaller (factor 0.7) (Table 2). Mineral hadhigherpH,CEC,NandPconcentrations,andlowerC/nutrientratios,whereastheOMandwater soil of the southern forest had higher pH, CEC, N and P concentrations, and lower C/nutrient ratios, contentweresimilarinthetwoforests(Table1). whereas the OM and water content were similar in the two forests (Table 1). Inbothsites,CandNconcentrationstypicallydeclinedwithsoildepth(Figure1).Incontrastwith In both sites, C and N concentrations typically declined with soil depth (Figure 1). In contrast forestfloor,soilNconcentrationwashigheratthesouthernsite(Tables1and2;Figure1). Asexpected, with forest floor, soil N concentration was higher at the southern site (Tables 1 and 2; Figure 1). As theC/eNxpreactteiod,d tehcel Cin/eNd rwatiioth ddecelpintehdi nwibtho tdhepsitthe sin( Sbuotphp slietems e(SnutaprpyleMmeantetarriayl MsFaitgeruiarles SF1ig).ure S1). FigureF2ig.uMren 2c. oMnnc econntrcaetnitornatsioinnsn inew nelyw-lsyh‐sehdedle laevaevsesa annddfl floooorr lliitttteerr iinn aa nnoortrhtehrenr nanadn ad saoustohuetrhne brenecbhe ech forest.foVreasltu. eVsalfuoers nfoerw nelyw-lsyh‐eshdedli tltitetrera arree mmeeaannss ± ±stasntdaanrdda errdroer;r nro =r ;9.n V=alu9e.s Vfoarl fuoeressft oflroofor raerset mfleoaonrs are ± standard error; n = 36 (6 sampling plots, 2 sampling seasons, 3 replicate analyses); different lower‐ means±standarderror;n=36(6samplingplots,2samplingseasons,3replicateanalyses);different case letters indicate significant differences between sites (t‐test; overall significance level = 0.05). lower-caselettersindicatesignificantdifferencesbetweensites(t-test;overallsignificancelevel=0.05). 3.4. Stocks of Organic C and N, Water Soluble C and N, Microbial and Fungal C 3.4. StocksofOrganicCandN,WaterSolubleCandN,MicrobialandFungalC The organic C and N pools in the forest floor of SF were smaller than in the northern forest T(hFeigourrgesa 3n iacndC 4a, nanddN Tapbloeo 2l)s. in the forest floor of SF were smaller than in the northern forest (Figures3aAnltdho4u,gahn dC Taanbdl eN2 c)o.ncentrations in mineral soil were lower than in forest floor (Figure 1), the Amltihnoeruagl hsoCil satnordedN mcuocnhc leanrgtrear taiobnsosluinte maminoeurnatls soof iCl wanedre Nl o(Fwigeurrtehs a3n ainnd f4o)r deuste fltoo oitrs (gFreigatuerre 1), thickness. The organic C stock in the 0–40 cm mineral layer was one order of magnitude higher than themineralsoilstoredmuchlargerabsoluteamountsofCandN(Figures3and4)duetoitsgreater in forest floor (Figure 4). In contrast with the pattern observed for forest floor, the stocks of C and N thickness. TheorganicCstockinthe0–40cmminerallayerwasoneorderofmagnitudehigherthanin in the mineral soil were higher in the southern forest (Figures 3 and 4). forestfloor(Figure4). Incontrastwiththepatternobservedforforestfloor,thestocksofCandNin The concentrations of water‐soluble C and N per gram litter/soil were one order of magnitude themineralsoilwerehigherinthesouthernforest(Figures3and4). higher in the forest floor than in the mineral soil (Supplementary Materials Figure S2). When Tehxepcreosnsceden atsr aat iforancstioonf wofa ttoetra-ls Col uanbdle NC, haonwdeNverp, ewragtrear‐msolluitbteler /Cs aonildw Ne rine othnee foorredset rflooform aangdn iint ude higherthine tmhienfeorarel sstoflil ohoardt hmaonrei nsitmheilamr ivnaeluraels s(oFiilg(uSrue p5p). lTemhee snotlaurbyleM fraatcetriioanlss oFfi gCu arendS 2N). iWn fhoerneset xflporoers sed asafrwacetrieo nhigohfetro itna lSCF tahnand iNn N,hFo, wwiethv tehr,e wexacteeprt-isoonl oufb sloeluCblaen Nd fNracitniotnh ien fsoprreinstg fl(Foiogruraen 5d). iInn cthonetrmasint, eral soilhatdhem froarcetiosinms oilfa wrvataelru‐seoslu(Fbilge uCr ean5d) .NT ihne msoinluerballe sofrila wcteioren hsiogfheCr ainn NdFN thiannf oinr eSsFt (flFoigourrew 5e)r. eInh bigothhe rin forests the soluble fractions increased from OL to OF + OH in the forest floor and from the 0 to 5 cm SFthaninNF,withtheexceptionofsolubleNfractioninspring(Figure5). Incontrast,thefractions layer to deeper layers in mineral soil (Figure 5). Significant differences between seasons for soluble C ofwater-solubleCandNinmineralsoilwerehigherinNFthaninSF(Figure5). Inbothforeststhe fraction were found only in the mineral soil of NF. The soluble N fraction was significantly higher in solublefractionsincreasedfromOLtoOF+OHintheforestfloorandfromthe0to5cmlayerto spring than in autumn both in forest floor and in mineral soil of the northern forest. In the forest floor deeperlayersinmineralsoil(Figure5). SignificantdifferencesbetweenseasonsforsolubleCfraction of SF, soluble N decreased significantly from autumn to spring, while in mineral soil no significant werefoundonlyinthemineralsoilofNF.ThesolubleNfractionwassignificantlyhigherinspring change was observed. thaninautumnbothinforestfloorandinmineralsoilofthenorthernforest. IntheforestfloorofSF, solubleNdecreasedsignificantlyfromautumntospring,whileinmineralsoilnosignificantchange wasobserved. Forests2016,7,181 9of20 Forests 2016, 7, 181 9 of 21 Figure3.CFiagnudre N3. Cp aonodl sNi npotohlse inc othnet cinonutuinmuufmo rfoersetstfl folooorr ‐-mmininerearla sloisl ooifl ao nfoarthneornrt ahnedr an saountdhearns boeuetchh ernbeech forest. Valufoersesat.r Veamlueesa anrse m±easntas n± dstaarnddaerrdr eorrr;orn; n= =3 366 ((66 ssaammpplinlign pgloptsl,o 2t ss,am2pslainmg pselainsognss, e3a rseopnlicsa,t3e replicate analyses). Different lower‐case letters indicate significant differences between sites (t‐test; overall analyses). Differentlower-caselettersindicatesignificantdifferencesbetweensites(t-test; overall significance level = 0.05). significancelevel=0.05). Forests 2016, 7, 181 10 of 21 FigureF4i.gurCe 4s. tCo cstkosckisn inf foorreesstt flfloooro arnadn mdinmerainl seorial lins ao inloritnhearn naondrt ah esorunthaenrnd beaecsho fuotrhesetr. nC sbtoecekcsh forest. in the mineral soil 0–30 cm depth are reported for comparison with INFI data. Values are means ± Cstocksinthemineralsoil0–30cmdeptharereportedforcomparisonwithINFIdata. Valuesare standard error; n = 36 (6 sampling plots, 2 sampling seasons, 3 replicate analyses). Different lower‐ means±standarderror;n=36(6samplingplots,2samplingseasons,3replicateanalyses).Different case letters indicate significant differences between sites (t test; overall significance level = 0.05). lower-caselettersindicatesignificantdifferencesbetweensites(ttest;overallsignificancelevel=0.05). 8 8 Northern Autumn Spring C) Southern C) nic 6 6 nic a a 2 a g g r r O O % 4 2 a 4 % C ( 1 2 2 C ( Soluble 2 1 b a 1a 1 1 2a a a b 2 Soluble b b b b b 0 0 OL OF+OH 0‐5 cm 6‐15 cm16‐30 cm31‐40 cm OL OF+OH 0‐5 cm 6‐15 cm16‐30 cm31‐40 cm 25 25 Autumn Spring 1 N) 20 a 20 N) al 1 2 a 2 al Tot 15 a a a 15 Tot % b % N ( N ( e 10 b 2 a 10 e ubl 1 b 2 b b ubl ol 5 1 2 5 ol S a S 1 b b 0 0 OL OF+OH 0‐5 cm 6‐15 cm 6‐30 cm 1‐40 cm OL OF+OH 0‐5 cm 6‐15 cm 6‐30 cm 1‐40 cm 1 3 1 3 Figure 5. Soluble C and N fractions % of total C and N in the continuum forest floor ‐mineral soil of a northern and a southern beech forest. Values are means ± standard error; n = 18 samples (6 sampling plots, 3 replicate analyses). Different lower‐case letters indicate significant differences between sites; Forests 2016, 7, 181 10 of 21 Figure 4. C stocks in forest floor and mineral soil in a northern and a southern beech forest. C stocks in the mineral soil 0–30 cm depth are reported for comparison with INFI data. Values are means ± Forests2016,7,181standard error; n = 36 (6 sampling plots, 2 sampling seasons, 3 replicate analyses). Different lower‐ 10of20 case letters indicate significant differences between sites (t test; overall significance level = 0.05). 8 8 Northern Autumn Spring C) Southern C) nic 6 6 nic a a 2 a g g Or Or % 4 2 a 4 % C ( 1 2 2 C ( Soluble 2 1 b a 1a 1 1 2a a a b 2 Soluble b b b b b 0 0 OL OF+OH 0‐5 cm 6‐15 cm16‐30 cm31‐40 cm OL OF+OH 0‐5 cm 6‐15 cm16‐30 cm31‐40 cm 25 25 Autumn Spring 1 N) 20 a 20 N) al 1 2 a 2 al % Tot 15 a b a a 15 % Tot N ( N ( e 10 b 2 a 10 e ubl 1 b 2 b b ubl ol 5 1 2 5 ol S a S 1 b b 0 0 OL OF+OH 0‐5 cm 6‐15 cm16‐30 cm31‐40 cm OL OF+OH 0‐5 cm 6‐15 cm16‐30 cm31‐40 cm Figure5. FSiogulureb 5le. SColuabnled C Nandfr Na cfrtaioctniosns% % ooff ttootatal Cl Canda nNd inN thein cotnhtienucuomn tfionreustu fmloofr o‐mreinsetrflalo sooirl o-fm a ineralsoil northern and a southern beech forest. Values are means ± standard error; n = 18 samples (6 sampling of a northern and a southern beech forest. Values are means ± standard error; n = 18 samples plots, 3 replicate analyses). Different lower‐case letters indicate significant differences between sites; (6samplingplots,3replicateanalyses). Differentlower-caselettersindicatesignificantdifferences betweensites; differencesbetweenseasonsareindicatedbydifferentnumbers(two-wayANOVA followedbypost-hocHolm-Šídákmethod;overallsignificancelevel=0.05). SimilarconcentrationsofmicrobialandfungalC(SupplementaryMaterialsFigureS3)werefound inforestfloorandinmineralsoil,withapeakinthetopminerallayer(0–5cm). Incontrast,when expressedasafractionoftotalorganicC,bothfungalandmicrobialCsignificantlyincreasedfrom forestfloortomineralsoilatbothsites;fungalandmicrobialCfractionsofforestfloorandtopmineral layerssignificantlyincreasedfromautumntospringatbothsites(Figure6). Differencesbetweensites wererecordedonlyforthemineralsoil,whichinthenorthernforesthadhigheramountsofmicrobial andfungalCrelativetothesoutherncounterpart(Figure6). However,fungalCincreasedsignificantly fromautumntospringintheforestfloorandinthetopmineralsoilofNF;inspringfungalCinthe forestfloorwashigherinNFthaninSF(Figure6). Potentialmineralizationwassimilarinthetwoforestsanddeclinedfromforestfloortomineral soil (Figure 7). The metabolic quotient was always slightly lower in spring than in autumn and a significantdifferencewasfoundinautumnbetweenthetwoforestsinmineralsoil(Figure7).
Description: