ebook img

c Copyright 2012 Anna Marie Rogers Dixon PDF

129 Pages·2012·2.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview c Copyright 2012 Anna Marie Rogers Dixon

(cid:13)c Copyright2012 AnnaMarieRogersDixon Understanding the Practical Limitations of Applying Analog Compressed Sensing Systems to ECG Signals AnnaMarieRogersDixon Adissertationsubmittedinpartialfulfillmentofthe requirementsforthedegreeof DoctorofPhilosophy UniversityofWashington 2012 ReadingCommittee: DavidJ.Allstot,Chair RobertB.Darling ManiSoma ProgramAuthorizedtoOfferDegree: UWElectricalEngineering UniversityofWashington Abstract UnderstandingthePracticalLimitationsofApplyingAnalogCompressedSensingSystemstoECG Signals AnnaMarieRogersDixon ChairoftheSupervisoryCommittee: ProfessorDavidJ.Allstot ElectricalEngineering Body area networks (BAN), networks of wearable and wireless physiological sensors, are ex- pected to have a profound positive impact in healthcare. The bio-signal sensors are equipped with ultra-low power radios communicating to a BAN personal base station, and ultimately the health- care provider. Most of the power dissipated in a state-of-the-art bio-signal sensor occurs when the RF power amplifier transmits data to the personal base station. Thus, a method is desired that de- creases the amount of data to be transmitted which reduces the duty cycle of the power amplifier andincreasestheoverallenergyefficiency. Compressed sensing (CS) is a compression scheme capable of significantly reducing a signal acquisition’s data rate. CS requires only a few incoherent measurements to compress signals that are sparse in some domain. Since compressed sensing is still an emerging topic, only a handful of CS systems have been realized in hardware. These systems have shown promising and yet limited abilities. Theobjectiveofthisresearchistoprovidedesignerswitharoadmapthatenablesthemto more easily make correct decisions in designing analog CS encoders and decoders for bio-signals. By showing the impact of the considerations of this CS system on ECG signals, it will set up a frameworkforhowtoapproachand/oranalyzethedesignofthesesystemsforallbio-signals. The CSroadmapaccomplishesthisgoalthisbydemonstratingtheimportanceofsignalsparsity,guides the design of sensing matrix generation, addressing the impact of several analog CS imperfections onCScompressionandguidestheselectionofproperCSreconstructionalgorithms. TABLEOFCONTENTS Page ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofAcronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Chapter1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 ApplyingCompressedSensingtoWirelessBodyAreaNetworks . . . . . . . . . . 1 1.2 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 CompressedSensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 AdaptiveSamplingVersusCompressedSensing . . . . . . . . . . . . . . . . . . . 13 2.3 ExistingCSEncoderSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 CompressedSensingSystemPerformanceMetrics . . . . . . . . . . . . . . . . . 18 Chapter3: SparsityandSamplingBasis . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 ImpactofSparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Time-DomainSamplingBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Wavelet-DomainSamplingBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 ThresholdingandSparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 SamplingDomainConclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Chapter4: TheSensingMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 ImpactofRandomSensingMatrixIncoherencewithSamplingMatrix . . . . . . . 43 4.2 One-BitSensingMatrixGenerationHardware . . . . . . . . . . . . . . . . . . . . 50 4.3 SensingMatrixConclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 i Chapter5: CSAnalogEncoderSystemDesign . . . . . . . . . . . . . . . . . . . . . 60 5.1 TheAnalogCSModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 ThresholdingandDiagnosticQuality . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 AnalogtoDigitalConverterNon-idealities . . . . . . . . . . . . . . . . . . . . . . 74 5.4 AnalogCSOperatorNon-idealities . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5 AnalogCSEncoderSystemDesignConclusions . . . . . . . . . . . . . . . . . . 92 Chapter6: CSDecoderandReconstructionAlgorithms . . . . . . . . . . . . . . . . . 93 6.1 CSReconstructionAlgorithmsOverview . . . . . . . . . . . . . . . . . . . . . . 93 6.2 CSReconstructionAlgorithmsPerformance . . . . . . . . . . . . . . . . . . . . . 96 6.3 CSReconstructionECGBio-signalCaseStudy . . . . . . . . . . . . . . . . . . . 97 6.4 CSDecoderConclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Chapter7: ConclusionsandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . 101 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 AppendixA: AnalogCSRowOperatorOperation . . . . . . . . . . . . . . . . . . . . . 109 AppendixB: Binary-WeightedChargeScalingDACAbsoluteAccuracy . . . . . . . . . 112 ii LISTOFFIGURES FigureNumber Page 1.1 WirelessBodyAreaNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 TimeDomainSparseECGWaveform . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Bio-SignalCSCODEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 AnalogCSSystemDesignRoadmap . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 12-BallExampleofSamplingMethods . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 CompressedSensingofanECGSignal. . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 AdaptiveSamplingappliedtoanECGSignal . . . . . . . . . . . . . . . . . . . . 14 2.4 ExistingSpectralEstimationCSEncoderSystems . . . . . . . . . . . . . . . . . . 16 2.5 ExistingBio-SignalCSEncoderSystems . . . . . . . . . . . . . . . . . . . . . . 17 2.6 AnalogCSMDAC/Integrator[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 ECGSampleforVariousPRDValues . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 SparsityvsPRDforCSReconstructedSignal . . . . . . . . . . . . . . . . . . . . 22 3.2 SparsityvsPRDforTime-DomainECGSignal . . . . . . . . . . . . . . . . . . . 23 3.3 ECGSparsityintheWaveletDomain . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 DifferentSamplingViewsofaTime-BasedSignal . . . . . . . . . . . . . . . . . . 26 3.5 ECGSparsityintheWaveletDomain . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 FilterBankfor(a)DWTand(b)IDWT . . . . . . . . . . . . . . . . . . . . . . . 31 3.7 SparsityvsPRDforTimeandWaveletDomainsofECGSignals . . . . . . . . . . 32 3.8 SparsityvsPRDforVaryingDWTSystemDepths . . . . . . . . . . . . . . . . . 33 3.9 SparsityvsPRDforTimeandWaveletDomainsofTime-ThresholdedECGSignals 40 4.1 TimeDomainCoherenceHistograms. . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 WaveletDomainCoherenceHistograms . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Coherencevs. PRDforTimeandWaveletSamplingBases . . . . . . . . . . . . . 49 4.4 HardwarePseudorandomNumberGenerators . . . . . . . . . . . . . . . . . . . . 52 4.5 SQNRvs. CompressionRatioforDifferentOne-BitMatrixStructures . . . . . . . 54 5.1 AnalogCSBlockDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 AnalogCSRowOperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 iii 5.3 ECGCompressedOutputMagnitudeDistribution . . . . . . . . . . . . . . . . . . 65 5.4 AnalogCSSystemwithADCNoiseModelECGSparsityvs. SNR . . . . . . . . . 67 5.5 ImpactofThresholdingonECGDiagnosticQuality . . . . . . . . . . . . . . . . . 69 5.6 EffectofThresholdingonANSI/AAMIStandardsCompliance . . . . . . . . . . . 72 5.7 SampleECGSignalCSCompressionwithoutThresholding. . . . . . . . . . . . . 73 5.8 AnalogCSSystemwithIdealSARADCandFixedPre-AmplificationECGSparsity vs. SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.9 CSPre-processingGainvs. ECGCompressedOutputSNR . . . . . . . . . . . . . 79 5.10 Analog CS System with Ideal SAR ADC and Calibrated Pre-Amplification ECG Sparsityvs. SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.11 ADCTransferCurvewithOffset . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.12 AnalogCSSystemwithADCOffsetvs. SNR . . . . . . . . . . . . . . . . . . . . 84 5.13 AnalogCSSystemwithADCGainErrorvs. SNR. . . . . . . . . . . . . . . . . . 84 5.14 Binary-WeightedChargeScalingDAC[2] . . . . . . . . . . . . . . . . . . . . . . 86 5.15 Binary-WeightedDACMaximumAbsoluteErrorvs. CapacitorTolerance . . . . . 87 5.16 Binary-WeightedDACMaximumAbsoluteErrorvs. SNR . . . . . . . . . . . . . 88 5.17 AnalogCSSystemwithAnalogCSOperatorOffsetvs. SNR . . . . . . . . . . . . 90 5.18 AnalogCSSystemwithAnalogCSOperatorGainErrorvs. SNR . . . . . . . . . 91 6.1 CSReconstructionComputationTimeComparison . . . . . . . . . . . . . . . . . 96 6.2 CSReconstructionECGSignalAccuracyComparison . . . . . . . . . . . . . . . 98 6.3 CSReconstructionComputationTimeComparison . . . . . . . . . . . . . . . . . 99 A.1 One-BitAnalogCSRowOperator . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.2 One-BitAnalogCSRowOperatorMultiplicationMode . . . . . . . . . . . . . . . 110 A.3 One-BitAnalogCSRowOperatorMultiplicationMode . . . . . . . . . . . . . . . 111 B.1 Binary-WeightedChargeScalingDAC[2] . . . . . . . . . . . . . . . . . . . . . . 112 iv

Description:
Anna Marie Rogers Dixon . Analog CS Row Operator Operation . and numerically stable compression and reconstruction, Candes recommends . several factors (sparsity control, reconstruction error, system noise, etc), many
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.