(cid:13)c Copyright2012 AnnaMarieRogersDixon Understanding the Practical Limitations of Applying Analog Compressed Sensing Systems to ECG Signals AnnaMarieRogersDixon Adissertationsubmittedinpartialfulfillmentofthe requirementsforthedegreeof DoctorofPhilosophy UniversityofWashington 2012 ReadingCommittee: DavidJ.Allstot,Chair RobertB.Darling ManiSoma ProgramAuthorizedtoOfferDegree: UWElectricalEngineering UniversityofWashington Abstract UnderstandingthePracticalLimitationsofApplyingAnalogCompressedSensingSystemstoECG Signals AnnaMarieRogersDixon ChairoftheSupervisoryCommittee: ProfessorDavidJ.Allstot ElectricalEngineering Body area networks (BAN), networks of wearable and wireless physiological sensors, are ex- pected to have a profound positive impact in healthcare. The bio-signal sensors are equipped with ultra-low power radios communicating to a BAN personal base station, and ultimately the health- care provider. Most of the power dissipated in a state-of-the-art bio-signal sensor occurs when the RF power amplifier transmits data to the personal base station. Thus, a method is desired that de- creases the amount of data to be transmitted which reduces the duty cycle of the power amplifier andincreasestheoverallenergyefficiency. Compressed sensing (CS) is a compression scheme capable of significantly reducing a signal acquisition’s data rate. CS requires only a few incoherent measurements to compress signals that are sparse in some domain. Since compressed sensing is still an emerging topic, only a handful of CS systems have been realized in hardware. These systems have shown promising and yet limited abilities. Theobjectiveofthisresearchistoprovidedesignerswitharoadmapthatenablesthemto more easily make correct decisions in designing analog CS encoders and decoders for bio-signals. By showing the impact of the considerations of this CS system on ECG signals, it will set up a frameworkforhowtoapproachand/oranalyzethedesignofthesesystemsforallbio-signals. The CSroadmapaccomplishesthisgoalthisbydemonstratingtheimportanceofsignalsparsity,guides the design of sensing matrix generation, addressing the impact of several analog CS imperfections onCScompressionandguidestheselectionofproperCSreconstructionalgorithms. TABLEOFCONTENTS Page ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ListofAcronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Chapter1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 ApplyingCompressedSensingtoWirelessBodyAreaNetworks . . . . . . . . . . 1 1.2 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 CompressedSensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 AdaptiveSamplingVersusCompressedSensing . . . . . . . . . . . . . . . . . . . 13 2.3 ExistingCSEncoderSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 CompressedSensingSystemPerformanceMetrics . . . . . . . . . . . . . . . . . 18 Chapter3: SparsityandSamplingBasis . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 ImpactofSparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Time-DomainSamplingBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Wavelet-DomainSamplingBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 ThresholdingandSparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 SamplingDomainConclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Chapter4: TheSensingMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 ImpactofRandomSensingMatrixIncoherencewithSamplingMatrix . . . . . . . 43 4.2 One-BitSensingMatrixGenerationHardware . . . . . . . . . . . . . . . . . . . . 50 4.3 SensingMatrixConclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 i Chapter5: CSAnalogEncoderSystemDesign . . . . . . . . . . . . . . . . . . . . . 60 5.1 TheAnalogCSModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 ThresholdingandDiagnosticQuality . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 AnalogtoDigitalConverterNon-idealities . . . . . . . . . . . . . . . . . . . . . . 74 5.4 AnalogCSOperatorNon-idealities . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5 AnalogCSEncoderSystemDesignConclusions . . . . . . . . . . . . . . . . . . 92 Chapter6: CSDecoderandReconstructionAlgorithms . . . . . . . . . . . . . . . . . 93 6.1 CSReconstructionAlgorithmsOverview . . . . . . . . . . . . . . . . . . . . . . 93 6.2 CSReconstructionAlgorithmsPerformance . . . . . . . . . . . . . . . . . . . . . 96 6.3 CSReconstructionECGBio-signalCaseStudy . . . . . . . . . . . . . . . . . . . 97 6.4 CSDecoderConclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Chapter7: ConclusionsandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . 101 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 AppendixA: AnalogCSRowOperatorOperation . . . . . . . . . . . . . . . . . . . . . 109 AppendixB: Binary-WeightedChargeScalingDACAbsoluteAccuracy . . . . . . . . . 112 ii LISTOFFIGURES FigureNumber Page 1.1 WirelessBodyAreaNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 TimeDomainSparseECGWaveform . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Bio-SignalCSCODEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 AnalogCSSystemDesignRoadmap . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 12-BallExampleofSamplingMethods . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 CompressedSensingofanECGSignal. . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 AdaptiveSamplingappliedtoanECGSignal . . . . . . . . . . . . . . . . . . . . 14 2.4 ExistingSpectralEstimationCSEncoderSystems . . . . . . . . . . . . . . . . . . 16 2.5 ExistingBio-SignalCSEncoderSystems . . . . . . . . . . . . . . . . . . . . . . 17 2.6 AnalogCSMDAC/Integrator[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 ECGSampleforVariousPRDValues . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 SparsityvsPRDforCSReconstructedSignal . . . . . . . . . . . . . . . . . . . . 22 3.2 SparsityvsPRDforTime-DomainECGSignal . . . . . . . . . . . . . . . . . . . 23 3.3 ECGSparsityintheWaveletDomain . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 DifferentSamplingViewsofaTime-BasedSignal . . . . . . . . . . . . . . . . . . 26 3.5 ECGSparsityintheWaveletDomain . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 FilterBankfor(a)DWTand(b)IDWT . . . . . . . . . . . . . . . . . . . . . . . 31 3.7 SparsityvsPRDforTimeandWaveletDomainsofECGSignals . . . . . . . . . . 32 3.8 SparsityvsPRDforVaryingDWTSystemDepths . . . . . . . . . . . . . . . . . 33 3.9 SparsityvsPRDforTimeandWaveletDomainsofTime-ThresholdedECGSignals 40 4.1 TimeDomainCoherenceHistograms. . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 WaveletDomainCoherenceHistograms . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Coherencevs. PRDforTimeandWaveletSamplingBases . . . . . . . . . . . . . 49 4.4 HardwarePseudorandomNumberGenerators . . . . . . . . . . . . . . . . . . . . 52 4.5 SQNRvs. CompressionRatioforDifferentOne-BitMatrixStructures . . . . . . . 54 5.1 AnalogCSBlockDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 AnalogCSRowOperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 iii 5.3 ECGCompressedOutputMagnitudeDistribution . . . . . . . . . . . . . . . . . . 65 5.4 AnalogCSSystemwithADCNoiseModelECGSparsityvs. SNR . . . . . . . . . 67 5.5 ImpactofThresholdingonECGDiagnosticQuality . . . . . . . . . . . . . . . . . 69 5.6 EffectofThresholdingonANSI/AAMIStandardsCompliance . . . . . . . . . . . 72 5.7 SampleECGSignalCSCompressionwithoutThresholding. . . . . . . . . . . . . 73 5.8 AnalogCSSystemwithIdealSARADCandFixedPre-AmplificationECGSparsity vs. SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.9 CSPre-processingGainvs. ECGCompressedOutputSNR . . . . . . . . . . . . . 79 5.10 Analog CS System with Ideal SAR ADC and Calibrated Pre-Amplification ECG Sparsityvs. SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.11 ADCTransferCurvewithOffset . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.12 AnalogCSSystemwithADCOffsetvs. SNR . . . . . . . . . . . . . . . . . . . . 84 5.13 AnalogCSSystemwithADCGainErrorvs. SNR. . . . . . . . . . . . . . . . . . 84 5.14 Binary-WeightedChargeScalingDAC[2] . . . . . . . . . . . . . . . . . . . . . . 86 5.15 Binary-WeightedDACMaximumAbsoluteErrorvs. CapacitorTolerance . . . . . 87 5.16 Binary-WeightedDACMaximumAbsoluteErrorvs. SNR . . . . . . . . . . . . . 88 5.17 AnalogCSSystemwithAnalogCSOperatorOffsetvs. SNR . . . . . . . . . . . . 90 5.18 AnalogCSSystemwithAnalogCSOperatorGainErrorvs. SNR . . . . . . . . . 91 6.1 CSReconstructionComputationTimeComparison . . . . . . . . . . . . . . . . . 96 6.2 CSReconstructionECGSignalAccuracyComparison . . . . . . . . . . . . . . . 98 6.3 CSReconstructionComputationTimeComparison . . . . . . . . . . . . . . . . . 99 A.1 One-BitAnalogCSRowOperator . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.2 One-BitAnalogCSRowOperatorMultiplicationMode . . . . . . . . . . . . . . . 110 A.3 One-BitAnalogCSRowOperatorMultiplicationMode . . . . . . . . . . . . . . . 111 B.1 Binary-WeightedChargeScalingDAC[2] . . . . . . . . . . . . . . . . . . . . . . 112 iv
Description: