ebook img

By Sunpreet Singh Arora Submitted to Michigan State University in partial fulfillment of the ... PDF

207 Pages·2016·36.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview By Sunpreet Singh Arora Submitted to Michigan State University in partial fulfillment of the ...

FINGERPRINT RECOGNITION: CONTRIBUTIONS TO LATENT MATCHING AND 3D FINGERPRINT TARGET GENERATION By Sunpreet Singh Arora A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Computer Science – Doctor of Philosophy 2016 ABSTRACT FINGERPRINT RECOGNITION: CONTRIBUTIONS TO LATENT MATCHING AND 3D FINGERPRINT TARGET GENERATION By Sunpreet Singh Arora Automatic fingerprint capture and comparison methods have led to the ubiquitous use of fingerprint-basedpersonrecognitioninapplicationsrangingfromlawenforcementandbordercon- troltonationalidentificationandsmartphoneunlock. However,despitetremendousadvancements inthestate-of-the-art,improvementsarestillneededincaseofsomechallengingapplications,e.g, to recognize poor quality and distorted fingerprints acquired from non-cooperative users, improve fingerprint reader fidelity, and determine anti-spoofing capability of different fingerprint readers. In this thesis, we address two such impending challenges: (i) comparison of latent prints found at crime scenes to large collections of reference prints (rolled tenprints or slap fingerprints) in law enforcement databases, and (ii) operational evaluation of fingerprint recognition systems prior to largescaledeployment. Wedevelopafeedbackparadigmthatusesreferenceprintfeaturestodynamicallyselectlatent features during matching. The paradigm automatically determines if dynamic latent feature selec- tion would improve recognition performance using a statistical hypothesis test and qualitatively decides the regions in latent and reference prints for applying feedback. The paradigm when used inconjunctionwithastate-of-the-artlatentmatcherdemonstratesmarkedimprovement(0.5-3.5%) inlatentmatchingaccuracy. Further, we develop a framework for crowdsourcing latent print feature markup to a pool of fingerprint examiners. The framework uses a statistical criterion to automatically determine whencrowdsourcingisrequired,andamethodtodynamicallydeterminethenumberofexaminers needed for latent feature markup. Significant recognition performance improvements (2.5-11.5%) areobtainedusingcrowdsourcedmarkupsinconjunctionwithastate-of-the-artlatentmatcher. Finally,wedesignandfabricatesingle-fingerandwholehand3Dtargetsforoperationalevalu- ationofopticalandcapacitivefingerprintreadersaswellasforend-to-endevaluationoffingerprint recognitionsystems. 2Dcalibrationpatternswithknowncharacteristics(e.g. syntheticfingerprints with known features, sine gratings with known orientation and spacing) are projected onto elec- tronic3Dfingerandhandsurfacestocreateelectronic3Dsingle-fingerandwholehandtargets. A high-resolution 3D printer is used to manufacture physical 3D single-finger and whole hand tar- gets from electronic targets. Other contributions include: (i) a method to chemically clean the 3D printedtargetswithoutimpactingtheengravedtargetpatterns,(ii)aproceduretoapplyconductive coating of metal/metal oxides on the surface of 3D targets using DC sputtering, (iii) fidelity mea- surement techniques using optical microscopy to assess the 3D target generation process, and (iv) methods to evaluate fingerprint readers using the fabricated 3D targets. We demonstrate that the 2D calibration pattern features are reproduced with high fidelity both on the electronic and phys- ical 3D single-finger and whole hand targets and that the intra-class variations between images of the 3D targets do not degrade matching accuracy (at 0.01% false accept rate). We evaluate several commerciallyavailablesingle-fingerandslapcontact-basedandcontactlessopticalreadersaswell ascapacitivereadersusingthegenerated3Dtargets. Copyright by SUNPREET SINGH ARORA 2016 To all my loved ones. v ACKNOWLEDGMENTS As I sit down to write this dissertation, I would like to take the opportunity to thank all my teachers, including my parents, primary, middle school and high school teachers, university pro- fessors and peers, who have taught me wonderful things, and from whom I have assimilated a majorityofmylifelearnings. Iwillalwaysremainindebtedtoallofyoufornotonlysharingyour knowledgebutalsofuelingmycuriositytoexploreandlearn. I am grateful to my advisor, Dr. Anil K. Jain for his encouragement and support at both professional and personal level. He backed me to the hilt while I was trying to stand on my own feet as a researcher. Once I did, he let me take my own flight and explore. I am also thankful toDr. XiaomingLiu,Dr. ArunRossandDr. SelinAviyenteforservingonmyPh.D.committee. ThePRIPlabprovidedmetherightkindofenvironmentforlearning. Interactionswithpeersin the lab during the last four years have not only advanced my knowledge but helped me appreciate thenuancesofresearch. Specifically,Iwouldliketomentionafewwhohaveleftalastingimpres- sion on me due to their sincerity, hard work, and tenacity: Soweon, Serhat, Radha, Alessandra, Scott,Lacey,Tarang,Keyur,Charles,Inci,Josh,Debayan,Kai,Hu,andEryun. Iwouldespecially like to thank Kai for all his help during my formative years. A few special mentions: Scott for being the one I could exchange ideas with for the first couple of years, Charles and Inci for being reallygoodfriendsandforlisteningtomyday-to-daygraduatelifeissuespatientlyoverlunch,and Lacey for being the frequent flyer companion to attend various conferences together around the world. I would like to acknowledge the following organizations and individuals for generously sup- porting the research projects I worked on: Nicholas G. Paulter Jr. from the National Institute of Standards and Technology (NIST), NIST Measurement Science program grant 60NANB11D155, the National Science Foundation (NSF) Center for Identification Technology Research (CITeR) grant 1066197, Ken Warman from the Bill and Melinda Gates Foundation, Mark Thomas and ShawnSarwarfromVaxTrac,andCaptainGregoryMichaudfromtheForensicScienceDivisionat vi MichiganStatePolice. IamalsogratefultoBrianWright,MichiganStateUniversityandMatthew Staymates, National Institute of Standards and Technology (NIST) for their assistance with 3D printing fingerprint models, and Anna Song, Michigan State University for her help in cleaning the3Dprintedmodels. IwouldalsoliketothankBrianWright,ChrisTraverseandLarsHaubold, Michigan State University for their help in sputter coating various materials on 3D fingerprint targets. I also want to thank the administrative staff of the Computer Science Department at MSU, includingNorma,Linda,Cathy,Debbie,KatyandCourtneyfortheirhelpwithvariousthingssuch ascourseregistration,conferencetravelandreimbursementsduringthecourseofmystudy. IwouldliketoexpressmysinceregratitudetoDr. SalilPrabhakarforgivingmetheopportunity to intern at Delta ID and extending all possible help to make my stay comfortable in the bay area. It was a wonderful experience working at Delta ID, particularly with Alex Ivanisov and Dr. Yi Chen. I owe a lot to my parents and brother for being by my side while I was going through the ups and downs of my journey as a graduate student. Without their moral support, writing this dissertationwouldnothavebeenpossible. Last but not the least, I would like to mention some special friends I made during my time here in East Lansing. They provided me immense support in different ways to make my stay worthwhile, Tridip Das, Girish Kasat, Shantanu Kelkar, Abhishek Santra, Sabyasachi Halder, Siddhartha Dutta, Shailendra, Rahul Deshpande, Prajakta Deshpande Kulkarni, Maya Patel, Tias Maiti, Rajib Mandal, Shreya Nad, Soumen Ghosh, Chetan Tambe, Oishi Sanyal, Saptarshi Das, Saptarshi Mukherjee, Portia Banerjee, Piku Mandal, Arkaprabha Konar, Preetam Giri, and Aritra Chakroborty. Ialsothankmyfriendsbackhome,particularly,VidushiChaudharyandKajalJoneja forkeepingmemotivatedwhenthechipsweredown. vii TABLE OF CONTENTS LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 FingerprintFormation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 FundamentalTenets: UniquenessandPermanence . . . . . . . . . . . . . . . . . . 4 1.3 FingerprintMilestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 MajorScientificStudies . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 ApplicationsinLawEnforcement . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 OtherApplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 ComparisonwithOtherTraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 DesignofFingerprintRecognitionSystems . . . . . . . . . . . . . . . . . . . . . 11 1.5.1 FingerprintAcquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.1.1 FingerprintSensingTechnologies . . . . . . . . . . . . . . . . . 15 1.5.2 FeatureExtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.3 FingerprintMatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.3.1 Exemplar-to-Exemplarmatching . . . . . . . . . . . . . . . . . 20 1.5.3.2 Latent-to-Exemplarmatching . . . . . . . . . . . . . . . . . . . 22 1.6 EvaluationofFingerprintRecognitionSystems . . . . . . . . . . . . . . . . . . . 23 1.6.1 SensingTechnologyCertification . . . . . . . . . . . . . . . . . . . . . . . 23 1.6.2 FeatureExtractionandMatchingEvaluation . . . . . . . . . . . . . . . . . 24 1.7 ChallengesinFingerprintRecognition . . . . . . . . . . . . . . . . . . . . . . . . 26 1.7.1 OpenResearchIssuesandChallenges . . . . . . . . . . . . . . . . . . . . 26 1.7.1.1 Automaticlatentfingerprintmatching . . . . . . . . . . . . . . . 26 1.7.1.2 Interoperabilityoffingerprintreaders . . . . . . . . . . . . . . . 26 1.7.1.3 Operationalevaluationoffingerprintsystems . . . . . . . . . . . 27 1.7.1.4 Fingerprintlivenessdetection . . . . . . . . . . . . . . . . . . . 27 1.7.1.5 Fingerprinttemplatesecurity . . . . . . . . . . . . . . . . . . . . 28 1.7.1.6 Matchingnon-idealfingerprintimages . . . . . . . . . . . . . . 29 1.7.2 AutomaticLatentFingerprintMatching . . . . . . . . . . . . . . . . . . . 29 1.7.3 OperationalEvaluationofFingerprintSystems . . . . . . . . . . . . . . . 30 1.8 DissertationContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Chapter2 LatentFingerprintMatching: PerformanceGainviaFeedbackfromEx- emplarPrints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.1 ManualLatentMatching . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.1.2 Bottom-upLatentMatchingSystems . . . . . . . . . . . . . . . . . . . . . 40 2.1.3 ProposedTop-DownLatentMatchingFramework . . . . . . . . . . . . . . 40 2.2 FeedbackParadigmforLatentMatching . . . . . . . . . . . . . . . . . . . . . . . 42 viii 2.3 Re-sortingCandidateListbasedonFeedback . . . . . . . . . . . . . . . . . . . . 43 2.3.1 InitialMatchingandAlignment . . . . . . . . . . . . . . . . . . . . . . . 45 2.3.2 ExemplarFeatureExtraction . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3.3 LatentFeatureExtractionandRefinement . . . . . . . . . . . . . . . . . . 49 2.3.4 MatchScoreComputation . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4 TheAdequacyofFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.1 GlobalCriterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.1.1 ModellingtheMatchScoreDistribution . . . . . . . . . . . . . . 52 2.4.1.2 Testforthepresenceofanupperoutlier . . . . . . . . . . . . . . 53 2.4.2 LocalCriterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5 ExperimentalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.5.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.5.1.1 NISTSD27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.5.1.2 WVU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.5.2 SizeoftheCandidateList(K) . . . . . . . . . . . . . . . . . . . . . . . . 62 2.5.3 EffectivenessoftheGlobalCriterionforFeedback . . . . . . . . . . . . . 62 2.5.4 PerformanceonNISTSD27Database . . . . . . . . . . . . . . . . . . . . 65 2.5.5 PerformanceonWVUDatabase . . . . . . . . . . . . . . . . . . . . . . . 66 2.5.6 ComputationalComplexity . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter3 CrowdPoweredLatentFingerprintMatching: FusingAFISwithExam- inerMarkups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.1 Semi-automaticLatentMatching: AdvantagesandDisadvantages . . . . . 71 3.1.2 ProposedCrowdPoweredLatentMatchingFramework . . . . . . . . . . . 72 3.2 CollectiveWisdomofMultipleExaminers . . . . . . . . . . . . . . . . . . . . . . 74 3.2.1 Expertcrowdsourcingframework . . . . . . . . . . . . . . . . . . . . . . 74 3.2.2 Whentocrowdsource? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.3 Howmanyexpertsareenough? . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3 ExperimentalDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.2 LatentMarkup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.3.1 Lights-outMatching . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.3.2 MatchingIndividualExaminerMarkups . . . . . . . . . . . . . . 81 3.3.3.3 FusingMultipleExaminerMarkups . . . . . . . . . . . . . . . . 84 3.3.3.4 Fusinglights-outAFISwithMultipleMarkups . . . . . . . . . . 84 3.3.3.5 Determiningtheneedforcrowdsourcing . . . . . . . . . . . . . 85 3.3.3.6 Greedycrowdsourcing . . . . . . . . . . . . . . . . . . . . . . . 86 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Chapter4 DesignandFabricationof3DSingle-FingerTargets . . . . . . . . . . . . 89 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1.1 StructuralEvaluationofFingerprintReaders . . . . . . . . . . . . . . . . . 91 ix 4.1.2 BehavioralEvaluationofFingerprintReaders . . . . . . . . . . . . . . . . 92 4.1.3 3DTargetsforBehavioralEvaluation . . . . . . . . . . . . . . . . . . . . 93 4.2 Generating3DTargets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 Preprocessing3Dfingersurface . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.1.1 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.1.2 Remeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.1.3 Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.1.4 Creatingoutersurface . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.1.5 Separatingfrontandrearportions . . . . . . . . . . . . . . . . . 102 4.2.2 Preprocessing2Dcalibrationpattern . . . . . . . . . . . . . . . . . . . . . 102 4.2.3 Mapping2Dcalibrationpatternto3Dsurface . . . . . . . . . . . . . . . . 103 4.2.4 Engraving2Dcalibrationpatternon3Dsurface . . . . . . . . . . . . . . . 106 4.2.5 Postprocessing3Dfingersurface . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.6 3Dprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.7 Chemicalcleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3 Fidelityof3DTargetGeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.1 2Dto3DProjectionError . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.2 3DprintingFabricationError . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3.3 Fidelityof2Dpatternfeaturesduring3Dtargetcreation . . . . . . . . . . 111 4.3.3.1 Fidelityof2Dpatternfeaturesafterprojectionto3Dsurface . . . 112 4.3.3.2 Fidelityoftheengravedfeaturesonthe3Dsurfaceafter3Dprinting113 4.3.3.3 End-to-end fidelity of 2D calibration pattern features after 3D printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.3.3.4 Intra-classvariabilitybetween3Dtargetimpressions . . . . . . . 117 4.4 BehavioralEvaluationofFingerprintReadersusing3DTargets . . . . . . . . . . . 118 4.4.1 ExperimentI:SyntheticSineGratingTargets . . . . . . . . . . . . . . . . 118 4.4.2 ExperimentII:FingerprintTargets . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Chapter5 3DWholeHandTargets: EvaluatingSlapandContactlessReaders . . . . 125 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2 GeneratingWholeHandTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3 Fidelityof3DWholeHandTargetGeneration . . . . . . . . . . . . . . . . . . . . 135 5.3.1 Replicationof2Dcalibrationpatternfeaturesonelectronic3Dhandtarget . 136 5.3.2 Replicationofelectronic3Dhandtargetfeaturesonphysical3Dhandtarget 137 5.3.3 Replicationof2Dcalibrationpatternfeaturesonphysical3Dhandtarget . . 138 5.3.4 Consistencybetweendifferentimpressionsofthephysical3Dhandtarget . 139 5.4 EvaluatingContact-basedSlapFingerprintReaders . . . . . . . . . . . . . . . . . 140 5.5 EvaluatingContactlessSlapFingerprintReader . . . . . . . . . . . . . . . . . . . 142 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Chapter6 Generating3DConductiveFingerprintTargets . . . . . . . . . . . . . . . 146 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2 SputterCoating3DTargets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.2.1 DCSputteringProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 x

Description:
Computer Science – Doctor of Philosophy. 2016 crime scenes to large collections of reference prints (rolled tenprints or slap Table 6.5 Similarity scores between plain impressions of the sputter coated goldfingers . Figure 2.2 Illustrating the typical bottom-up data flow used in latent to exemp
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.