SIMULATED GEOPHYSICAL MONITORING OF RADIOACTIVE WASTE REPOSITORY BARRIERS by AntonBiryukov Athesissubmittedinconformitywiththerequirements forthedegreeofMasterofAppliedScience GraduateDepartmentofCivilEngineering UniversityofToronto (cid:13)c Copyright2015byAntonBiryukov Abstract Simulatedgeophysicalmonitoringofradioactivewasterepositorybarriers AntonBiryukov MasterofAppliedScience GraduateDepartmentofCivilEngineering UniversityofToronto 2015 Estimationofattenuationoftheelasticwavesinclaysandhighclay-contentrocksisimportantforthequality of geophysical methods relying on processing the recorded waveforms. Time-lapse imaging is planned to be employed for monitoring of the condition of high-radioactive waste repositories. Engineers can analyze and optimizeconfigurationofthemonitoringsystemusingnumericalmodellingtools. Thereliabilityofmodeling requirespropercalibration. Thepurposeofthisthesisisthreefold: (i)proposeacalibrationmethodologyforthe wavepropagationtoolsbasedontheexperimentaldata,(ii)estimatetheattenuationinbentoniteasafunctionof temperatureandwatercontent,and(iii)investigatethefeasibilityofactivesonicmonitoringoftheengineered barriers. The results suggest that pronounced inelastic behavior of bentonite has to be taken into account in geophysicalmodelingandanalysis. Therepository–scalemodelsconfirmthatactivesonicmonitoringiscapableof depictingphysicalchangesinthebentonitebarrier. ii Acknowledgements My “mission - MASc thesis” would never be accomplished without support and encouragement from many individualsacrosstheglobe,towhomIwouldliketoexpressmywholeheartedgratitude. Firstofall,Iwould liketothankmysupervisors,Prof. GiovanniGrasselliandDr. NicolaTisatofortheirguidance,professionalism, support,andsenseofhumor. OnoneofmanycoldRussianwinterdays,ProfessorGrasselliofferedmeawonderful opportunitytostudyrockmechanicsandgeophysicsunderhissupervisionatonethebestuniversitiesintheworld, and in no doubts the best GeoGroup on campus. Back then I would never believe that professors can be any informalandsofriendly. wouldalsoliketothankNicolaforhis(i)endlesspatienceandpoolofknowledge,that hiskindlysharedwithmeeverytimeIhadquestionsIwasunabletoresolve,(ii)never-endingenthusiasmand creativity,(iii)experimentalistexperiencehewouldalwaysshare. Ihavenevermetsuchinspirationalpeoplebefore andamlookingforwardtocontinuemypathwithintheItalianteamoneday. Iwouldalsoliketothankmydearresearchbuddies,withoutwhommystayintheUniversityandinCanada would be less entertaining and productive. Thank you, Simon Gerrard Edmund Harvey, Qi Zhao and Paola Miglietta,forallthetimewespenttogetherarguing,solvingproblems,TAing,playinghockey,drinkingcoffee, proofreadingeachotherwritingandhavinggreattimeoutsidetheUniversitywalls. ThankstoDr. ScottBriggsfor hisadvice,languageandwordethymologysupport,aswellasperiodicallecturesonhowtosetupthenetworks andserversproperly,andoccasionaldiscussionsonvarioustopics. IsincerelyappreciateallthetimeSimonandQi spentlisteningtomycurses,complainsandstillmanagingtostayclosefriendsandsticktogether. Asweknow,allworkandnoplaymakesJackadullboy. ThankstomycolleaguesintheDepartmentand CEGSAfororganizingsocialeventsandentertainingmeinthehardtimes. IwouldalsoliketothankProfessorBerndMilkereitandRaminSalehfortheircontinuousgeophysicalsupport andassociateddiscussion,andinvitingmetoKEGS.SpecialthanksgotoProfessorKarlPetersonforhiskindness andhelpingmeduringmyfirstdaysasaninternationalstudentinCanada. Icandefinitelyclaimthatunderhis supervisionIbenefitedfrommyTAhoursmore,thantheundergraduatestudents. Imanagedtolearnmoreabout microscopy,concretematerialsand...plumbing;whoknowswhatkindofknowledgemightbeofusetomorrow?... Finally,Iwouldliketoexpressmygratitudetomyparents,mysisterandmydearLizafortheirconstantlove, support,andencouragement. Theyalwaysmotivatedmetogrowandforcedmetolooktowardsmylifewitha positiveandoptimisticattitude,whichcarriedmethroughmanydifficulties. Last,butnotleast,I’dliketothankmyfriendsfromMoscowInstituteofPhysicsandTechnology,whoremained closenomatterhowmuchtimeandspaceseparatedus: Iwillalwaysfeelstrongbondsbetweenus“phystechs”, thebondsthatcansustainanypoliticalconflicts. IappreciatethesupportandmotivationfromEugeneGrebennikov bothbeforeandaftermyarrivalinCanada,withoutwhomthisadventurewouldprobablyneverhappen. iii Contents 1 Introduction 2 1.1 Basicsofwavepropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 1Dcase: extensional(bar)waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 2Dand3Dcases: compressionalandshearbodywaves . . . . . . . . . . . . . . . . . . . 3 1.2 Wavesinviscoelasticmedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Fluidsaturationeffects: empiricalandheuristicalmethods . . . . . . . . . . . . . . . . . 5 1.2.2 Linearviscoelasticity: dispersionandattenuation . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Numericalmodellingofwavepropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Generaloverviewofnumericalmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 GeneralconceptsofFD,FEM,SEMandBEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 FiniteDifferenceMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.2 FiniteElementandSpectralElementMethod . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.3 BoundaryElementMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Chaptersummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Workflowtonumericallyreproducelaboratoryultrasonicdatasets 14 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Laboratorysetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Numericalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Reasonsforcalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.4 Calibrationmethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 IterativecalibrationoftheexperimentalsetupforS-waves . . . . . . . . . . . . . . . . . 19 2.4.2 Subdomainmodelupscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.3 WetmontmorilloniteS-waveattenuationestimation . . . . . . . . . . . . . . . . . . . . . 21 2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7 AppendixA:Goodnessoffit(GOF)functionestimation . . . . . . . . . . . . . . . . . . . . . . 25 2.8 AppendixB:Barwaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.9 AppendixC:Errorsofthecalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 iv 3 Attenuationofbentonite. Monitoringofnuclearwasterepositories 29 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Laboratoryandnumericalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 Attenuationmodellingmechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.3 Iterationprocedurestructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.4 GOFevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.5 Repository-scalemodelsimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.1 Attenuationestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.2 ModifiedGTSframeworksimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5.1 EffectsoftemperatureandwatercontentonQ andQ . . . . . . . . . . . . . . . . . . . 45 p s 3.5.2 UncertaintyinQvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5.3 Implicationsonrepository-scalemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Concludingremarksandfuturework 50 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Bibliography 52 v List of Tables 2.1 Materialparametersusedinnumericalsimulations . . . . . . . . . . . . . . . . . . . . . . . . . 17 vi List of Figures 1.1 Wavepropagationphenomenoninaperfectlyelasticrod. . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Hysterisisloop. Theredlineshowstheidealstress-strainpathfollowedbyapurelyelasticmaterial. Thegreenpathisfollowedbyarealmaterial. Thedifferencebetweentheareasunderloadingand unloadingcurvesdescribestheenergylossesduringthecycle. . . . . . . . . . . . . . . . . . . . 5 1.3 Fundamental mechanical elements comprising the mechanical models employed to represent viscoelasticmaterials: a)aspringandb)adashpot. . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Kelvin-Voigtmechanicalmodel(a)withassociatednormalizedvelocityandattenutioncurves(b). 8 1.5 ThepropagationoftheRickerwaveletthroughtheelasticrodswith(a)andwithouttheanelastic Kelvin-Voigtintrusion(b). Theintrusiondomainisshowninred. Thesuccessionofsnapshots showsthewavefieldintherodatcorrespondingtimeslices.Reddashedlineindicatesthereflections offtheintrusion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 (a)SchematicdiagramoftheultrasonicfacilityemployedintheexperimentstomeasureV and p V ;(b)asubdomainusedforiterativecalibration;(c)aphotooftheultrasonicfacilityinafully s assembledstate;and(d)normalizedsignalsenttotheemitter.. . . . . . . . . . . . . . . . . . . . 16 2.2 (a)TheGOFdistributionasafunctionoftheK andK and(b,c,d)numericaltracescorrespond- s p ingto“no-sample”modelwithvariousvelocitymodels. Greensquaresandredtrianglesshow analyticallypredictedP-andS-wavearrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Numericaltracescorrespondingtosubdomain(a)andfull-size(b)models. Theoverlapbetween thetraces(c)lendsvaliditytothevaluesofK andK obtainedthroughmodelingonthesubdomain. 20 p s 2.4 Anexampleof“constantQ-spectrum”attenuationmodelemployedinthemodelscorrespondingto (a)Q=6and(b)itsGSLSdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 TheGOFdistributionasafunctionoftheQ andQ (a)andnumericaltracescorrespondingto p s viscoelastic(b,c)andaquasi-elastic(d,Q =300)simulationsinbentonite. Greensquaresand s redtrianglesshowanalyticallypredictedP-andS-wavearrivals,respectively . . . . . . . . . . . 22 2.6 Theroadmapofthecalibrationprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.7 IllustrationofGOFevaluation: user-definedreferencepointsandcorrespondingnumericalpeaks areshownbybluesquaresandredcircles,respectively. Theprojectionofformerandlatterontime axisresultsintosetsofT andT respectively . . . . . . . . . . . . . . . . . . . . . . . . 26 i,exp i,num 2.8 NumericaltracescorrespondingtoS-waveandP-waveexperimentsinbounded/unboundedmodels (a,b,respectively)andP-wavesimulationcorrespondingtocalibrated“no-sample”model. Red circles,greentrianglesandbluesquaresshowanalyticallypredictedP-,bar,andS-wavearrivals, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 vii 3.1 (a)SchematicdiagramoftheultrasonicfacilityemployedintheexperimentstomeasureV and p V and used for iterative attenuation estimation (b) Material parameters used in the numerical s simulations. Theelasticmodulianddensityofbentonitevarywiththetemperatureanditswater content (Tisato and Marelli [2013]); therefore we provide the range of values for V , V , and p s densityρthatwereassignedduringattenuationestimation. (c)Normalizedinputsignalsenttothe emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 (a) 1 asafunctionoffrequencyapproximatesconstantQ=25in1kHz–1MHzbandwidth. Q(f) Notethatthesignalspectrumremainswithinthesetfrequencyrangeatanycrosssectionofthe setup(only4areshownforclarity). (b)Themechanicalrepresentationoflinearviscoelasticmodel (inlet)andcorrespondingdispersionofS-wavevelocity. . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Goodness-of-Fitevaluationmethodology: a)pairedpeaksanalysis,shownforapairofanumerical andexperimental;b)peakslopecomparisonandc)crosscorrelationofnumericalandexperimental seismogramnormalizedbyautocorrelationofexperimentaltrace . . . . . . . . . . . . . . . . . . 37 3.4 Schematic diagram of the GTS tunnel, modified after Marelli et al. [2010]. The canister with borosilicateHLRW-glassmatrixisplacedinthetunnelandisolatedfromthehostrockbybentonite filling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 GOF estimation plots (a) and numerical traces (b,c,d) corresponding to a bentonite sample of W = 20%,T = 40◦ C. Cold and hot colors indicate low and high values of GOF metric, c respectively. ThelocationsofP-andS-wavearrivalshownbygreensquaresandredtriangles, respectively,indicatethefidelityofnumericalmodeltopropagatethesignalatconstantapparent velocityV usingdispersionmodelswithdifferentrelaxationfrequenciesandinputvelocities apparent V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 corr 3.6 DistributionofQ andQ inbentoniteasafunctionoftemperatureandwatercontent: a)Q (W ) p s p c andQ (W )atT =50,b)interpolatedQ (T,W )andQ (T,W )surfaceplots. . . . . . . . . . 41 s c p c s c 3.7 (a) Schematic diagram of the tunnel cross section A and monitoring system, the viscoelastic parametersofthematerialsemployed(Table)and(b)seismograms,correspondingtomodelled bentonitephysicalconditions(cases). Thereceiversareindicatedasblacktriangles,thesource locationisshowninreddiamond. Thetablesummarizestheviscoelasticparametersthatwere assignedtobentoniteonacase-by-casebasis. Forbetterwaveformcomparison,themainsignal arrivalsforreceivers#9and#10areshown. Seismictracesarecolor-codedbasedonthephysical conditions(modelingcase)theyreferto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.8 (a) Schematic diagram of the tunnel cross section B and monitoring system, the viscoelastic parametersofthematerialsemployed(Table)and(b)seismograms,correspondingtomodelled bentonite physical conditions (cases).The receivers are indicated as black triangles, the source locationisshowninreddiamond. Thetablesummarizestheviscoelasticparametersthatwere assignedtobentoniteonacase-by-casebasis. Seismictracesarecolor-codedbasedonthephysical conditions(modelingcase)theyreferto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.9 PseudocolorplotforreceiverqualitymatrixR,correspondingtofourreceiversemployedinthe crosssectionAmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.10 PseudocolorplotforreceiverqualitymatrixR,correspondingtofourreceiversemployedinthe crosssectionBmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 viii Preamble Thepresentthesishasbeenpreparedasacollectionoftwojournalarticlesfocusedontheestimationofviscoelastic properties of bentonite and monitoring of high-level radioactive waste (HLRW) repositories. However, at the momentofthesissubmission,onlyChapter2hasbeensubmittedandisinpressinascientificjournal. Bothtopics arestudiednumerically. Theinvestigationaimsat: • proposingamethodologytocalibratethenumericaltoolsforaccuratereproductionoflaboratoryexperiments; • presentingatechniquetonumericallyestimateattenuationinthematerialofinterestbasedonlaboratory data; • providingasolid“foundation”foranumericaltoolthatenablessimulationsoftheactiveseismicmonitoring intheHLRWrepositories. Chapter1servesasanintroductiontothefundamentalsofwavepropagationtheory,thatisinthebasisofthis thesis,suppliedwiththeequationsandconceptsgoverningthepropagationofwavesinbothidealizedelasticmedia andmediawithdissipation. Abriefoverviewofthenumericaltools,simulatingwavepropagation,isprovidedat theendofthechapter. Chapter2presentsastep-by-stepguideforthecalibrationofnumericaltoolsbasedoniterativeprocedure appliedtothelaboratorydataonultrasonicwavepropagationinbentonite. Varyingtheinputvelocitymodel,we attempttoeliminatetheuncertaintyintheinputvaluesanddelayscausedbytheimperfectionsofthesetup. The proposedcalibrationmethodologyissomewhatuniversalandinprinciplecanbeappliedtonumericaltoolsof differentconstitutionandemploydatafromvariousultrasonicexperimentalsetups(publishedinJournalofRock MechanicsandGeotechnicalEngineering,1,no. 5,1–9). Chapter3proposesamethodologyofestimatingqualityfactorsinbentoniteusingforwardmodelingiterative procedure.Thefirststepwastoexaminethedependenceoftheattenuationonthetemperatureandthewater-content ofbentonite. Thesecondstepwastoassessthereliabilityoftheproposedactiveseismicmonitoringroutineby modelingthewavepropagationatfull-scalerepositorymodel,incorporatingviscoelasticpropertiesofbentonite(to besubmittedtoGeophysicalJournalInternational). Chapter4summarizesthemainfindingsofthethesisandprovidesanoutlookonpossiblefutureresearchpaths thatcouldimproveourknowledgeaboutattenuationmechanismsinlowpermeabilityclaysandtheusabilityof seismicmonitoringofradioactivewasterepositories. 1 Chapter 1 Introduction 1.1 Basics of wave propagation Thissectionprovidesabriefexplanationoftheequationsandconceptsthatgovernthepropagationofelasticwaves. Initially, a perfect elastic material that represents the ideal case in which no elastic energy is lost, is assumed. Furtherdissipationmechanismsthatpartiallyabsorbpropagatingenergywillbeintroducedtomodelmorerealistic materialbehavior. Starting from a simplified, one-dimensional (1D) linear elastic model, it will be demonstrated that low- amplitude,dynamicallyappliedstressestravelintheelasticmediumatafinitespeed(wavevelocity). Asanext step,thetheorywillbeappliedtothree-dimensional(3D)case,andthewaveequationforfullyelasticwaveswill beconstructed. Itwillbeshownthattwotypesofsolutionsarepossible,correspondingtocompressional(P)and shear(S)waves,andwillderivetheequationsfortheirvelocities. Thesolepurposeofthesectionistointroduce thereaderwiththeprinciplesdescribingthewavepropagationwithoutintroducingthecomplicationsthatarisedue totheimperfectionsandtheviolationofassumptions. 1.1.1 1Dcase: extensional(bar)waves Figure1.1: Wavepropagationphenomenoninaperfectlyelasticrod. Consideraslenderelasticrodofagivencross-sectionalshapethatisuniformalongtherodaxis(x-direction, 2
Description: