ebook img

by Anton Biryukov A thesis submitted in conformity with the requirements for the degree of Master PDF

66 Pages·2015·8.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview by Anton Biryukov A thesis submitted in conformity with the requirements for the degree of Master

SIMULATED GEOPHYSICAL MONITORING OF RADIOACTIVE WASTE REPOSITORY BARRIERS by AntonBiryukov Athesissubmittedinconformitywiththerequirements forthedegreeofMasterofAppliedScience GraduateDepartmentofCivilEngineering UniversityofToronto (cid:13)c Copyright2015byAntonBiryukov Abstract Simulatedgeophysicalmonitoringofradioactivewasterepositorybarriers AntonBiryukov MasterofAppliedScience GraduateDepartmentofCivilEngineering UniversityofToronto 2015 Estimationofattenuationoftheelasticwavesinclaysandhighclay-contentrocksisimportantforthequality of geophysical methods relying on processing the recorded waveforms. Time-lapse imaging is planned to be employed for monitoring of the condition of high-radioactive waste repositories. Engineers can analyze and optimizeconfigurationofthemonitoringsystemusingnumericalmodellingtools. Thereliabilityofmodeling requirespropercalibration. Thepurposeofthisthesisisthreefold: (i)proposeacalibrationmethodologyforthe wavepropagationtoolsbasedontheexperimentaldata,(ii)estimatetheattenuationinbentoniteasafunctionof temperatureandwatercontent,and(iii)investigatethefeasibilityofactivesonicmonitoringoftheengineered barriers. The results suggest that pronounced inelastic behavior of bentonite has to be taken into account in geophysicalmodelingandanalysis. Therepository–scalemodelsconfirmthatactivesonicmonitoringiscapableof depictingphysicalchangesinthebentonitebarrier. ii Acknowledgements My “mission - MASc thesis” would never be accomplished without support and encouragement from many individualsacrosstheglobe,towhomIwouldliketoexpressmywholeheartedgratitude. Firstofall,Iwould liketothankmysupervisors,Prof. GiovanniGrasselliandDr. NicolaTisatofortheirguidance,professionalism, support,andsenseofhumor. OnoneofmanycoldRussianwinterdays,ProfessorGrasselliofferedmeawonderful opportunitytostudyrockmechanicsandgeophysicsunderhissupervisionatonethebestuniversitiesintheworld, and in no doubts the best GeoGroup on campus. Back then I would never believe that professors can be any informalandsofriendly. wouldalsoliketothankNicolaforhis(i)endlesspatienceandpoolofknowledge,that hiskindlysharedwithmeeverytimeIhadquestionsIwasunabletoresolve,(ii)never-endingenthusiasmand creativity,(iii)experimentalistexperiencehewouldalwaysshare. Ihavenevermetsuchinspirationalpeoplebefore andamlookingforwardtocontinuemypathwithintheItalianteamoneday. Iwouldalsoliketothankmydearresearchbuddies,withoutwhommystayintheUniversityandinCanada would be less entertaining and productive. Thank you, Simon Gerrard Edmund Harvey, Qi Zhao and Paola Miglietta,forallthetimewespenttogetherarguing,solvingproblems,TAing,playinghockey,drinkingcoffee, proofreadingeachotherwritingandhavinggreattimeoutsidetheUniversitywalls. ThankstoDr. ScottBriggsfor hisadvice,languageandwordethymologysupport,aswellasperiodicallecturesonhowtosetupthenetworks andserversproperly,andoccasionaldiscussionsonvarioustopics. IsincerelyappreciateallthetimeSimonandQi spentlisteningtomycurses,complainsandstillmanagingtostayclosefriendsandsticktogether. Asweknow,allworkandnoplaymakesJackadullboy. ThankstomycolleaguesintheDepartmentand CEGSAfororganizingsocialeventsandentertainingmeinthehardtimes. IwouldalsoliketothankProfessorBerndMilkereitandRaminSalehfortheircontinuousgeophysicalsupport andassociateddiscussion,andinvitingmetoKEGS.SpecialthanksgotoProfessorKarlPetersonforhiskindness andhelpingmeduringmyfirstdaysasaninternationalstudentinCanada. Icandefinitelyclaimthatunderhis supervisionIbenefitedfrommyTAhoursmore,thantheundergraduatestudents. Imanagedtolearnmoreabout microscopy,concretematerialsand...plumbing;whoknowswhatkindofknowledgemightbeofusetomorrow?... Finally,Iwouldliketoexpressmygratitudetomyparents,mysisterandmydearLizafortheirconstantlove, support,andencouragement. Theyalwaysmotivatedmetogrowandforcedmetolooktowardsmylifewitha positiveandoptimisticattitude,whichcarriedmethroughmanydifficulties. Last,butnotleast,I’dliketothankmyfriendsfromMoscowInstituteofPhysicsandTechnology,whoremained closenomatterhowmuchtimeandspaceseparatedus: Iwillalwaysfeelstrongbondsbetweenus“phystechs”, thebondsthatcansustainanypoliticalconflicts. IappreciatethesupportandmotivationfromEugeneGrebennikov bothbeforeandaftermyarrivalinCanada,withoutwhomthisadventurewouldprobablyneverhappen. iii Contents 1 Introduction 2 1.1 Basicsofwavepropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 1Dcase: extensional(bar)waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 2Dand3Dcases: compressionalandshearbodywaves . . . . . . . . . . . . . . . . . . . 3 1.2 Wavesinviscoelasticmedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Fluidsaturationeffects: empiricalandheuristicalmethods . . . . . . . . . . . . . . . . . 5 1.2.2 Linearviscoelasticity: dispersionandattenuation . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Numericalmodellingofwavepropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Generaloverviewofnumericalmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 GeneralconceptsofFD,FEM,SEMandBEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 FiniteDifferenceMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.2 FiniteElementandSpectralElementMethod . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.3 BoundaryElementMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Chaptersummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Workflowtonumericallyreproducelaboratoryultrasonicdatasets 14 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Laboratorysetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Numericalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Reasonsforcalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.4 Calibrationmethodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 IterativecalibrationoftheexperimentalsetupforS-waves . . . . . . . . . . . . . . . . . 19 2.4.2 Subdomainmodelupscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.3 WetmontmorilloniteS-waveattenuationestimation . . . . . . . . . . . . . . . . . . . . . 21 2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7 AppendixA:Goodnessoffit(GOF)functionestimation . . . . . . . . . . . . . . . . . . . . . . 25 2.8 AppendixB:Barwaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.9 AppendixC:Errorsofthecalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 iv 3 Attenuationofbentonite. Monitoringofnuclearwasterepositories 29 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Laboratoryandnumericalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 Attenuationmodellingmechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.3 Iterationprocedurestructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.4 GOFevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.5 Repository-scalemodelsimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.1 Attenuationestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.2 ModifiedGTSframeworksimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5.1 EffectsoftemperatureandwatercontentonQ andQ . . . . . . . . . . . . . . . . . . . 45 p s 3.5.2 UncertaintyinQvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5.3 Implicationsonrepository-scalemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Concludingremarksandfuturework 50 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Bibliography 52 v List of Tables 2.1 Materialparametersusedinnumericalsimulations . . . . . . . . . . . . . . . . . . . . . . . . . 17 vi List of Figures 1.1 Wavepropagationphenomenoninaperfectlyelasticrod. . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Hysterisisloop. Theredlineshowstheidealstress-strainpathfollowedbyapurelyelasticmaterial. Thegreenpathisfollowedbyarealmaterial. Thedifferencebetweentheareasunderloadingand unloadingcurvesdescribestheenergylossesduringthecycle. . . . . . . . . . . . . . . . . . . . 5 1.3 Fundamental mechanical elements comprising the mechanical models employed to represent viscoelasticmaterials: a)aspringandb)adashpot. . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Kelvin-Voigtmechanicalmodel(a)withassociatednormalizedvelocityandattenutioncurves(b). 8 1.5 ThepropagationoftheRickerwaveletthroughtheelasticrodswith(a)andwithouttheanelastic Kelvin-Voigtintrusion(b). Theintrusiondomainisshowninred. Thesuccessionofsnapshots showsthewavefieldintherodatcorrespondingtimeslices.Reddashedlineindicatesthereflections offtheintrusion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 (a)SchematicdiagramoftheultrasonicfacilityemployedintheexperimentstomeasureV and p V ;(b)asubdomainusedforiterativecalibration;(c)aphotooftheultrasonicfacilityinafully s assembledstate;and(d)normalizedsignalsenttotheemitter.. . . . . . . . . . . . . . . . . . . . 16 2.2 (a)TheGOFdistributionasafunctionoftheK andK and(b,c,d)numericaltracescorrespond- s p ingto“no-sample”modelwithvariousvelocitymodels. Greensquaresandredtrianglesshow analyticallypredictedP-andS-wavearrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Numericaltracescorrespondingtosubdomain(a)andfull-size(b)models. Theoverlapbetween thetraces(c)lendsvaliditytothevaluesofK andK obtainedthroughmodelingonthesubdomain. 20 p s 2.4 Anexampleof“constantQ-spectrum”attenuationmodelemployedinthemodelscorrespondingto (a)Q=6and(b)itsGSLSdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 TheGOFdistributionasafunctionoftheQ andQ (a)andnumericaltracescorrespondingto p s viscoelastic(b,c)andaquasi-elastic(d,Q =300)simulationsinbentonite. Greensquaresand s redtrianglesshowanalyticallypredictedP-andS-wavearrivals,respectively . . . . . . . . . . . 22 2.6 Theroadmapofthecalibrationprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.7 IllustrationofGOFevaluation: user-definedreferencepointsandcorrespondingnumericalpeaks areshownbybluesquaresandredcircles,respectively. Theprojectionofformerandlatterontime axisresultsintosetsofT andT respectively . . . . . . . . . . . . . . . . . . . . . . . . 26 i,exp i,num 2.8 NumericaltracescorrespondingtoS-waveandP-waveexperimentsinbounded/unboundedmodels (a,b,respectively)andP-wavesimulationcorrespondingtocalibrated“no-sample”model. Red circles,greentrianglesandbluesquaresshowanalyticallypredictedP-,bar,andS-wavearrivals, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 vii 3.1 (a)SchematicdiagramoftheultrasonicfacilityemployedintheexperimentstomeasureV and p V and used for iterative attenuation estimation (b) Material parameters used in the numerical s simulations. Theelasticmodulianddensityofbentonitevarywiththetemperatureanditswater content (Tisato and Marelli [2013]); therefore we provide the range of values for V , V , and p s densityρthatwereassignedduringattenuationestimation. (c)Normalizedinputsignalsenttothe emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 (a) 1 asafunctionoffrequencyapproximatesconstantQ=25in1kHz–1MHzbandwidth. Q(f) Notethatthesignalspectrumremainswithinthesetfrequencyrangeatanycrosssectionofthe setup(only4areshownforclarity). (b)Themechanicalrepresentationoflinearviscoelasticmodel (inlet)andcorrespondingdispersionofS-wavevelocity. . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Goodness-of-Fitevaluationmethodology: a)pairedpeaksanalysis,shownforapairofanumerical andexperimental;b)peakslopecomparisonandc)crosscorrelationofnumericalandexperimental seismogramnormalizedbyautocorrelationofexperimentaltrace . . . . . . . . . . . . . . . . . . 37 3.4 Schematic diagram of the GTS tunnel, modified after Marelli et al. [2010]. The canister with borosilicateHLRW-glassmatrixisplacedinthetunnelandisolatedfromthehostrockbybentonite filling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 GOF estimation plots (a) and numerical traces (b,c,d) corresponding to a bentonite sample of W = 20%,T = 40◦ C. Cold and hot colors indicate low and high values of GOF metric, c respectively. ThelocationsofP-andS-wavearrivalshownbygreensquaresandredtriangles, respectively,indicatethefidelityofnumericalmodeltopropagatethesignalatconstantapparent velocityV usingdispersionmodelswithdifferentrelaxationfrequenciesandinputvelocities apparent V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 corr 3.6 DistributionofQ andQ inbentoniteasafunctionoftemperatureandwatercontent: a)Q (W ) p s p c andQ (W )atT =50,b)interpolatedQ (T,W )andQ (T,W )surfaceplots. . . . . . . . . . 41 s c p c s c 3.7 (a) Schematic diagram of the tunnel cross section A and monitoring system, the viscoelastic parametersofthematerialsemployed(Table)and(b)seismograms,correspondingtomodelled bentonitephysicalconditions(cases). Thereceiversareindicatedasblacktriangles,thesource locationisshowninreddiamond. Thetablesummarizestheviscoelasticparametersthatwere assignedtobentoniteonacase-by-casebasis. Forbetterwaveformcomparison,themainsignal arrivalsforreceivers#9and#10areshown. Seismictracesarecolor-codedbasedonthephysical conditions(modelingcase)theyreferto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.8 (a) Schematic diagram of the tunnel cross section B and monitoring system, the viscoelastic parametersofthematerialsemployed(Table)and(b)seismograms,correspondingtomodelled bentonite physical conditions (cases).The receivers are indicated as black triangles, the source locationisshowninreddiamond. Thetablesummarizestheviscoelasticparametersthatwere assignedtobentoniteonacase-by-casebasis. Seismictracesarecolor-codedbasedonthephysical conditions(modelingcase)theyreferto. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.9 PseudocolorplotforreceiverqualitymatrixR,correspondingtofourreceiversemployedinthe crosssectionAmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.10 PseudocolorplotforreceiverqualitymatrixR,correspondingtofourreceiversemployedinthe crosssectionBmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 viii Preamble Thepresentthesishasbeenpreparedasacollectionoftwojournalarticlesfocusedontheestimationofviscoelastic properties of bentonite and monitoring of high-level radioactive waste (HLRW) repositories. However, at the momentofthesissubmission,onlyChapter2hasbeensubmittedandisinpressinascientificjournal. Bothtopics arestudiednumerically. Theinvestigationaimsat: • proposingamethodologytocalibratethenumericaltoolsforaccuratereproductionoflaboratoryexperiments; • presentingatechniquetonumericallyestimateattenuationinthematerialofinterestbasedonlaboratory data; • providingasolid“foundation”foranumericaltoolthatenablessimulationsoftheactiveseismicmonitoring intheHLRWrepositories. Chapter1servesasanintroductiontothefundamentalsofwavepropagationtheory,thatisinthebasisofthis thesis,suppliedwiththeequationsandconceptsgoverningthepropagationofwavesinbothidealizedelasticmedia andmediawithdissipation. Abriefoverviewofthenumericaltools,simulatingwavepropagation,isprovidedat theendofthechapter. Chapter2presentsastep-by-stepguideforthecalibrationofnumericaltoolsbasedoniterativeprocedure appliedtothelaboratorydataonultrasonicwavepropagationinbentonite. Varyingtheinputvelocitymodel,we attempttoeliminatetheuncertaintyintheinputvaluesanddelayscausedbytheimperfectionsofthesetup. The proposedcalibrationmethodologyissomewhatuniversalandinprinciplecanbeappliedtonumericaltoolsof differentconstitutionandemploydatafromvariousultrasonicexperimentalsetups(publishedinJournalofRock MechanicsandGeotechnicalEngineering,1,no. 5,1–9). Chapter3proposesamethodologyofestimatingqualityfactorsinbentoniteusingforwardmodelingiterative procedure.Thefirststepwastoexaminethedependenceoftheattenuationonthetemperatureandthewater-content ofbentonite. Thesecondstepwastoassessthereliabilityoftheproposedactiveseismicmonitoringroutineby modelingthewavepropagationatfull-scalerepositorymodel,incorporatingviscoelasticpropertiesofbentonite(to besubmittedtoGeophysicalJournalInternational). Chapter4summarizesthemainfindingsofthethesisandprovidesanoutlookonpossiblefutureresearchpaths thatcouldimproveourknowledgeaboutattenuationmechanismsinlowpermeabilityclaysandtheusabilityof seismicmonitoringofradioactivewasterepositories. 1 Chapter 1 Introduction 1.1 Basics of wave propagation Thissectionprovidesabriefexplanationoftheequationsandconceptsthatgovernthepropagationofelasticwaves. Initially, a perfect elastic material that represents the ideal case in which no elastic energy is lost, is assumed. Furtherdissipationmechanismsthatpartiallyabsorbpropagatingenergywillbeintroducedtomodelmorerealistic materialbehavior. Starting from a simplified, one-dimensional (1D) linear elastic model, it will be demonstrated that low- amplitude,dynamicallyappliedstressestravelintheelasticmediumatafinitespeed(wavevelocity). Asanext step,thetheorywillbeappliedtothree-dimensional(3D)case,andthewaveequationforfullyelasticwaveswill beconstructed. Itwillbeshownthattwotypesofsolutionsarepossible,correspondingtocompressional(P)and shear(S)waves,andwillderivetheequationsfortheirvelocities. Thesolepurposeofthesectionistointroduce thereaderwiththeprinciplesdescribingthewavepropagationwithoutintroducingthecomplicationsthatarisedue totheimperfectionsandtheviolationofassumptions. 1.1.1 1Dcase: extensional(bar)waves Figure1.1: Wavepropagationphenomenoninaperfectlyelasticrod. Consideraslenderelasticrodofagivencross-sectionalshapethatisuniformalongtherodaxis(x-direction, 2

Description:
microscopy, concrete materials andplumbing; who knows what kind of . 1.5 The propagation of the Ricker wavelet through the elastic rods with (a) and without the anelastic . assigned to bentonite on a case-by-case basis.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.