MULTIPHYSICS PHASE FIELD MODELING OF HYDROGEN DIFFUSION AND δ-HYDRIDE PRECIPITATION IN α-ZIRCONIUM by Andrea M. Jokisaari Adissertationsubmittedinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy (MaterialsScienceandEngineering) intheUniversityofMichigan 2016 DoctoralCommittee: ProfessorKatsuyoS.Thornton,Chairperson ProfessorJohnE.Allison ProfessorMichaelThouless ProfessorGaryS.Was (cid:13)c Andrea M. Jokisaari 2016 AllRightsReserved DEDICATION To my family, friends, and scientists of the past and the future. ii ACKNOWLEDGMENTS Iwould liketoexpress mysincere appreciation tomy advisor,Dr. KatsuyoThornton, for her continuous support of my doctoral research. She gave me an opportunity to work in computational and theoretical materials science, an area in which I had little prior expertise. I would also like to thank the rest of my thesis committee: Dr. John Allison, Dr. GaryWas,andespeciallyDr. MichaelThouless,fortheirencouragement,insightful comments, and hard questions. I would also like to thank my fellow group members fortheirsupportandfellowshipthroughoutmygraduatecareer,particularlyDr. Larry Aagesen, Dr. Susan Gentry, Dr. Candace Gilet, and Dr. David Montiel. I also express mydeepestgratitudetomymentorsandcollaborators,especiallyDr. OlleHeinonen,Dr. MichaelTonks,andCodyPermann,fortheirsupport. Iwouldliketoacknowledgethecomputationresourcesusedinpursuitofthisresearch, namely the High Performance Computing Center at Idaho National Laboratory. I also wish to express my gratitude to the MOOSE team at Idaho National Laboratory for their generous help and support. This research was supported by the Consortium for AdvancedSimulationofLightWaterReactors(www.casl.gov),anEnergyInnovationHub (http://www.energy.gov/hubs)forModelingandSimulationofNuclearReactorsunder U.S.DepartmentofEnergyContractNo. DE-AC05-00OR22725. Wordscannotexpressmyloveandappreciationformyhusband,Jake,whoencouraged iii me to come to University of Michigan so many years ago and has been by my side throughoutitall. Iwouldliketothankmyfriendsforenrichingmylife,andEdHuebner andChristineKelleyfortheirinvaluablepersonalsupportandguidance. iv TABLE OF CONTENTS DEDICATION ii ACKNOWLEDGMENTS iii LISTOFFIGURES ix LISTOFTABLES xviii ABSTRACT xix ChapterI.Introduction 1 1.1 Generalintroductiontonuclearelectricitygeneration . . . . . . . . . . . . . 1 1.2 Fuelcladdinganditsdegradation . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Characteristicsofzirconiumhydrideinfuelcladding . . . . . . . . . . . . . 6 1.4 Existingmodelsofhydridinginzirconium . . . . . . . . . . . . . . . . . . . 14 1.5 Researchobjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Dissertationoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ChapterII.Background: PhysicsandNumericalMethods 19 2.1 IntroductiontothePhaseFieldModel . . . . . . . . . . . . . . . . . . . . . . 19 v 2.1.1 Freeenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.2 Governingequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Multiphysicsphasefieldmodel . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Freeenergyformulation . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Governingequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.3 Solidmechanicsmodel . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Nucleationmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Nondimensionalizationoftheequations . . . . . . . . . . . . . . . . 43 2.3 Numericalmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Mathematicalformulationofthefiniteelementmethod . . . . . . . . 45 2.3.2 MOOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.3 Hyrax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4 Chaptersummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ChapterIII.GeneralMethodforIncorporatingCALPHADFreeEnergiesofMixing intoPhaseFieldModels: Applicationtothe α-Zirconium/δ-HydrideSystem 63 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.1 Generalcoupledconserved-nonconservedphasefieldmodel . . . . 66 3.2.2 GenericCALPHADfreeenergyapproximation . . . . . . . . . . . . 68 3.2.3 The α-zirconium/δ-hydridemodel . . . . . . . . . . . . . . . . . . . 71 3.3 Resultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Chapter IV. A Nucleation Algorithm for the Coupled Conserved-Nonconserved vi PhaseFieldModel 88 4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1.1 Phasefieldmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1.2 Explicitnucleationalgorithm . . . . . . . . . . . . . . . . . . . . . . . 91 4.1.3 Order-parameter-only nucleation algorithm and implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.4 Simulationconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2 Resultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.1 OPOnucleusevolution . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.2 ValidationofOPOnucleationandgrowth . . . . . . . . . . . . . . . 106 4.2.3 Effectofadaptivityonconcurrentnucleationandgrowthsimulations110 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 ChapterV.PreliminaryWorkandFutureWork 117 5.1 Preliminarywork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.1.1 Sensitivityofthevolumetricnucleationrate . . . . . . . . . . . . . . 118 5.1.2 Spatialdistributionofthevolumetricnucleationratearoundapre- cipitate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.1.3 Concurrentnucleationandgrowthsimulations . . . . . . . . . . . . 134 5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.1 Terminalsolidsolubilityhysteresisofhydrogenin α-zirconium . . . 139 5.2.2 Interfacialenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.2.3 Thermodiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2.4 Plasticityandirradiation . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 vii ChapterVI.Conclusions 150 Bibliography 153 viii LIST OF FIGURES 1.1.1 AveragecapacityfactorofnuclearpowerplantsintheUnitedStates,1973- 2011[5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 APWRfuelassemblyschematic,reproducedfromRef.[10]. . . . . . . . . . 4 1.3.1 Phasediagramofthezirconium-hydrogensystem. FromRef.[23]. . . . . . 8 1.3.2 A compilation of TSSd and TSSp data of a-zirconium alloys (zirconium, Zircaloy-2, and Zircaloy-4), labeled by the first author. Experimental techniquesincludesynchrotronX-raydiffraction(Barrow,Zircaloy-2[33], Zanellato, Zircaloy-4 [32], Colas, Zircaloy-2 [20]); differential scanning calorimetry (McMinn, Zircaloy-2 and 4 [30], Une, Zircaloy-2 (2003) [31], Une, zirconium (2004) [41], Tang, Zircaloy-4 [42]); dilatometry (Erickson, zirconium[29],Slattery,Zircaloy-4[43]);anddiffusioncoupling(Kearns, zirconium[44]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 The macroscale hydride structure of irradiated Zircaloy-4 fuel cladding. Thehydridesarepresentasdarkgraycircumferentiallines. Reproduced fromRef.[48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.4 Themicrostructureofasinglehydrideprecipitate. (a)BrightfieldTEM;the hydrideappearsasonemassiveparticle. (b)DarkfieldTEM;theindividual platesinthehydrideareapparent. ReproducedfromRef.[22]. . . . . . . . . 11 ix
Description: