SELF-LOCALIZATION OF TARGET NODES USING OPPORTUNISTIC COMMUNICATION WITH REFERENCE NODES, STATISTICAL TIME-OF-ARRIVAL, GRID METHOD, LINEAR MATRIX INEQUALITY AND CENTER-OF-GRAVITY by AbhishekArunkumarKulkarni AThesissubmittedtotheGraduateFacultyof AuburnUniversity inPartialFulfillmentofthe RequirementsfortheDegreeof MasterofScience Auburn,Alabama May7,2016 Approvedby AlvinS.Lim,Co-Chair,ProfessorofComputerScienceandSoftwareEngineering ShiwenMao,Co-Chair,ProfessorofElectricalandComputerEngineering ThaddeusRoppel,AssociateProfessorofElectricalandComputerEngineering ABSTRACT Self-localizationofmobilenodesisanimportantproblembecausemanyusefulmobileappli- cations will become feasible once accurate position information is available. Generally, existing methods for obtaining accurate location information require either sophisticated hardware (e.g. Global Positioning System (GPS), Ultra-Wideband (UWB), ultrasounds transceiver) or dedicated infrastructures (e.g. GSM, WLAN). We address this problem using a different approach that re- quiresnospecialhardwareorinfrastructuresupport. Themainconceptadaptedtosolvethisprob- lemis: localizationcanbeperformedandimprovedbymeansofcooperativeandopportunisticdata exchanges among mobile nodes. Consider a GPS-denied target node with no position information that communicates opportunistically with a number of in-range mobile peer nodes with some po- sitioningcapabilities. Thedataexchangesbetweenthetargetnodeandthepeernodeswillthenbe used by the target node to refine its position estimation using a combination of these algorithms: Statistical Time-of-Arrival (TOA), Linear Matrix Inequalities (LMI), barycentric algorithms, Grid Method and Center of Gravity (COG) techniques. Approximate ranging using Statistical TOA method using Bhattacharyya Distance enables the LMI, Grid Method, barycentric algorithms and Center of Gravity(COG) technique to improve position accuracy. To investigate the performance of such an opportunistic localization algorithm, we define a simple model that describes the op- portunistic interactions between nodes and then we run several computer simulations to analyze the effect of the ranging error on the positioning of the target node. Along with the simulation modelwehaveconductedtheexperimentswithreal-worlddatatomeasuretheperformanceofthe techniquesinthereal-world. Theresultsgeneratedfrombothsimulationandreal-worlddatashow that opportunistic interactions can actually improve self-localization accuracy, where the position estimationerrorisabout2morlessinmanydifferentscenarios. ii ACKNOWLEDGEMENTS IwouldliketoexpressmyappreciationtoDr. Limfortheguidancehehasprovidedthrough- out my study at Auburn. I would also like to express my gratitude to the advisory committee members,Dr. ShiwenMaoandDr. ThaddeusRoppel. I would also like to thank several fellow students including Song Gao and Amogh Kashyap fortheirsignificantcontributionstothisresearch. Aboveall,IwouldliketothankmyparentswhohelpedmecometoU.S.andpursuegraduate studyatAuburn. iii StylemanualorjournalusedJournalofApproximationTheory(togetherwiththestyleknown as”aums”). BibliographyfollowsvanLeunen’sAhandbookforScholars. ComputerSoftwareusedThedocumentpreparationpackageTEX(specificallyLATEX)together withthedepartmentalstyle-fileaums.sty. iv TableofContents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 MOTIVATIONS AND APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Hospitals,WarehousesandUniversityCampus . . . . . . . . . . . . . . . 6 2.2.2 IndoorTrackingofFirefighters . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 LocalizationofWirelessSensorNetwork . . . . . . . . . . . . . . . . . . 7 2.2.4 AirportsandSubwayStations . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.5 Robotlocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.6 Museums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.7 TargetedAdvertisingandWarningAlerts . . . . . . . . . . . . . . . . . . 8 3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 RangingTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 NavigationUsingUltraWideband(UWB) . . . . . . . . . . . . . . . . . . . . . . 12 3.3 NavigationusingReceivedSignalStrengthIndicator(RSSI) . . . . . . . . . . . . 13 3.4 NavigationusingTime-of-Arrival(TOA)andTime-difference-of-Arrival(TDoA) . 14 3.5 NavigationusingAngle-of-Arrival(AoA) . . . . . . . . . . . . . . . . . . . . . . 15 4 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 v 4.2 ConceptualApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.1 AssumptionsandGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.2 Time-of-ArrivalRangingTechnique . . . . . . . . . . . . . . . . . . . . . 18 4.2.3 LinearMatrixInequalityTechnique . . . . . . . . . . . . . . . . . . . . . 19 4.2.4 GridMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.5 BarycentricAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2.6 Center-of-GravityTechnique . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 DESIGN AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1 RangingModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 Rangingtechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.1 EuclideanTime-of-ArrivalRangingMethod . . . . . . . . . . . . . . . . . 22 5.2.2 StatisticalTime-of-ArrivalRangingMethod . . . . . . . . . . . . . . . . . 23 5.3 Self-LocalizationofTargetNode . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3.1 RawLMIEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.2 Self-LocalizationusingLinearMatrixInequalityandBarycentricAlgorithm 27 5.3.3 Self-localization using Linear Matrix Inequality and Center of Gravity Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3.4 Self-positioningusingGridMethodTechnique . . . . . . . . . . . . . . . 29 6 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.1 SimulationSetupandImplementation . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 ReferenceCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.1 LinearMatrixInequalitywithBarycentricAlgorithm . . . . . . . . . . . . 31 6.2.2 LinearMatrixInequalitywithCenterOfGravityTechnique . . . . . . . . 32 6.2.3 VaryingTime-of-ArrivalInducedError . . . . . . . . . . . . . . . . . . . 32 6.2.4 RandomWaypointMobilityModelAnalysis . . . . . . . . . . . . . . . . 33 6.2.5 FirefighterMobilityModelAnalysis . . . . . . . . . . . . . . . . . . . . . 34 6.3 Real-WorldModelSpecifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 vi 7 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.1 SimulationResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.2 Accuracyofreferencecase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.2.1 LinearmatrixInequalitywithBarycentricAlgorithm . . . . . . . . . . . . 36 7.2.2 LinearMatrixInequalitywithCenterOfGravityTechnique . . . . . . . . 40 7.2.3 LMIwithvaryingEuclideanTime-Of-ArrivalDistanceError . . . . . . . . 41 7.3 SimulationResultsofMobilityModels . . . . . . . . . . . . . . . . . . . . . . . . 42 7.3.1 LinearMatrixInequalitywithRandomWaypointMobilityModel . . . . . 43 7.3.2 LinearMatrixInequalitywithFirefighterMobilityModel . . . . . . . . . . 44 7.3.3 GridMethodwithCenter-of-Gravity . . . . . . . . . . . . . . . . . . . . . 49 7.3.4 Comparison of Linear Matrix Inequality Technique and Grid Method for SimulationModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.3.5 Comparison of Linear Matrix Inequality Technique and Grid Method for RealWorldData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 vii ListofFigures 5.1 (a) Histogram of RTT samples for reference node at 10m and (b) Probability density estimateofRTTsamplesforreferencenodeat10m . . . . . . . . . . . . . . . . . . . 24 5.2 ProbabilitydensityestimateofRTTsamplesforreferencenodeat20m . . . . . . . . 25 5.3 ProbabilitydensityestimateofRTTsamplesforreferencenodeat30m . . . . . . . . 25 5.4 RawPositionEstimationusingonlyLinearMatrixInequality . . . . . . . . . . . . . . 27 5.5 PositionEstimationusingLinearMatrixInequalityandBarycentricAlgorithm . . . . 28 5.6 Plotofallthegridpointsintheintersectionareaincludingthereferencenodeandreal targetnodepositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.1 LMI-onlyErrorEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.2 LMI+barycenterErrorEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.3 ErrorcomparisonBetweenLMI-onlyandLMI+barycenter . . . . . . . . . . . . . . . 39 7.4 LMI-OnlyEstimationErrorforVaryingNodeRange . . . . . . . . . . . . . . . . . . 40 7.5 LMI+BarycenterEstimationErrorforVaryingNodeRange . . . . . . . . . . . . . . . 41 7.6 LMI+BarycenterEstimationforactualdevices . . . . . . . . . . . . . . . . . . . . . 42 7.7 LMI+CenterOfGravityEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.8 LMI+COGwithVaryingTOAerror . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.9 LMIwithRWMMandVaryingPausetime . . . . . . . . . . . . . . . . . . . . . . . 45 7.10 LMIwithFirefighterMobilityModelandCOG . . . . . . . . . . . . . . . . . . . . . 46 7.11 FirefightermobilitywithLMIandCOGalongwithdifferentTargetnodepositions . . 47 7.12 FirefightermobilitywithLMIandCOGalongwithdifferentTargetnodepositionsand largercommunicationrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.13 MATLAB Map of Shelby Foyer (Auburn University) including all the peer nodes, RealTargetnodeandEstimatedTargetnodePositions . . . . . . . . . . . . . . . . . 49 viii 7.14 The Indoor map of Shelby Foyer (Auburn University) including all the peer nodes, Targetnodeandestimatedtargetnodepositions . . . . . . . . . . . . . . . . . . . . . 50 7.15 MatLab Map of Shelby Center Hallway (Auburn University) including all the peer nodes,RealTargetnodeandEstimatedTargetnodePositions . . . . . . . . . . . . . . 51 7.16 TheIndoor mapofShelby CenterHallway(Auburn University)includingall thepeer nodes,Targetnodeandestimatedtargetnodepositions . . . . . . . . . . . . . . . . . 52 7.17 Plot of reference node position, Real Target node and Target node position estimated fromGridandLMImethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.18 The difference between normal circle communication model and Donut circle Com- municationmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.19 Plotofreferencenodepositionswithdonuts,realtargetnodeandgridpoints . . . . . 55 7.20 Plot of reference node positions, real target node position and target node position estimatedfromGridandLMImethods . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.21 PlotofreferencenodeswithdonutsandGridpointsfordifferentintersectionareas . . 57 7.22 Plot of Reference node positions, Real target node and estimated target node position fromGridandLMImethodforAuburnUniversityShelbyHallway . . . . . . . . . . . 58 7.23 Plot of reference node positions, real Target node position and estimated target node positionfromGridandLMImethodsforAuburnUniversityShelbyFoyer . . . . . . . 59 7.24 Plot of reference node positions, real Target node position and estimated target node positionfromGridandLMImethodsforAuburnUniversityHallwayandmultiplerooms 60 7.25 PlotoftargetnodelocationerrorcomparisonbetweenLMIandGridmethodwith20% inducedTOAdistanceerror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.26 PlotoftargetnodelocationerrorcomparisonbetweenLMIandGridmethodwith50% inducedTOAdistanceerror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.27 PlotoftargetnodelocationerrorcomparisonbetweenLMIandGridmethodwith80% inducedTOAdistanceerror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.28 Plot of target node location error comparison between LMI and Grid method with 100%inducedTOAdistanceerror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.29 Plot of target node location error comparison between LMI and Grid method for Sta- tisticalTOAdataforAuburnUniversityFoyHallMainFloor . . . . . . . . . . . . . . 65 7.30 Plot of target node location error comparison between LMI and Grid method for Sta- tisticalTOAdataforAuburnUniversityShelbycenterhallwayandmultiplerooms. . . 66 ix 7.31 Plot of target node location error comparison between LMI and Grid method for Sta- tisticalTOAdataforAuburnUniversityShelbycenterhallwayandmultiplerooms. . . 67 7.32 Plot of target node location error comparison between LMI and Grid method for Sta- tisticalTOAdataforAuburnUniversityBrounhallSecondfloor. . . . . . . . . . . . . 68 x
Description: