ebook img

but were afraid to ask PDF

143 Pages·1999·0.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview but were afraid to ask

Everything you always wanted to know about ∗ rings in GAP . ∗ ( but were afraid to ask) Diplomarbeit zur Erlangung des akademischen Grades eines Diplom-Ingenieurs in der Studienrichtung Technische Mathematik, Stzw. Informations- und Datenverarbeitung Angefertigt am Institut fu¨r Mathematik der Technisch- Naturwissenschaftlichen Fakult¨at der Johannes Kepler Universita¨t Linz Eingereicht bei Univ.-Prof. Dr. Gu¨nter Pilz Ju¨rgen Ecker October 7, 1999 Preface We dance around in a ring and suppose, But the secret sits in the middle and knows. Robert Frost (1875–1963) Thereexistthousandsofbooksonring-theoryeachcontaininghundredsofthe- orems,mostofthemforspecialclassesofrings. Nonethelessgivenaringcertain propertiescannotbecheckedbyhandinareasonabletime(unlessbyagenius). This makes computer programs desireable that do the dirty work. We shall dance around a little and gether the most common results in ring theory. Chapter 1 starts with a glance at universal algebra. In chapter 2 we gether results about rings. Chapters 3 and 4 are about analyzing the structure of a ring and end with the famous density theorem due to Jacobson. Chapters 5 and 6 shall make computation easier in many cases. In chapter 7 we give an overview about results for polynomial rings featuring Buchberger’s Algorithm for Groebner Bases. We omit proofs if they are long and not of particular importance for the algorithms. However, the main part is a library of GAP-functions presented in chapter 8. ThisisausersmanualforallthefunctionsforringssofarimplementedinGAP. Note, thatthisisnotacollectionofsuper-fastalgorithmsforveryspecialrings, but of default functions which will work for any ring using as little knowledge about the ring as possible. For those interested in curious programming styles we have added the source code of all new functions in chapter 10. 1 Contents 1 Universal Algebra 8 1.1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Moore–Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 More about Congruences and Subdirect Products . . . . . . . . . 11 1.4 Chain Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Rings 13 2.1 Rings and Subrings . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Ideals and Factor Rings . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Radical-Theory 22 3.1 Jacobson Radical . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Nil Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2 CONTENTS 3 4 Subdirect Decomposition 24 4.1 Subdirect Decomposition of Rings . . . . . . . . . . . . . . . . . 24 4.2 Consequences of Birkhoff’s theorem. . . . . . . . . . . . . . . . . 26 4.2.1 Primitive Rings . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.2 Semi-simplicity . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.3 Density Theorems . . . . . . . . . . . . . . . . . . . . . . 29 5 Chain Conditions 31 5.1 DCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Some results for improved algorithms 35 6.1 Ideal Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2 Factor2ring–Avoidance . . . . . . . . . . . . . . . . . . . . . . . . 37 6.3 Divide et Impera . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 Polynomial rings 41 7.1 Orderings on R[X] . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.2 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.3 Reduction Relations . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.4 Reduction in K[X] . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.5 Buchberger’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 47 7.6 Improvements on Buchberger’s Algorithm . . . . . . . . . . . . . 49 7.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 CONTENTS 4 8 GAP–Manual: Rings 53 8.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 8.1.1 Data Structures. . . . . . . . . . . . . . . . . . . . . . . . 54 8.1.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.1.3 Algebraic Domains . . . . . . . . . . . . . . . . . . . . . . 55 8.1.4 Elements of Special Classes of Fields . . . . . . . . . . . . 55 8.2 Defining a Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.2.1 Ring Records . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.2.2 Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.2.3 PolynomialRing. . . . . . . . . . . . . . . . . . . . . . . . 58 8.2.4 AsRing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.2.5 AsGroupElement . . . . . . . . . . . . . . . . . . . . . . . 59 8.2.6 AsRingElement . . . . . . . . . . . . . . . . . . . . . . . . 60 8.2.7 DirectProduct . . . . . . . . . . . . . . . . . . . . . . . . 60 8.3 Subrings and Ideals. . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.3.1 Subring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.3.2 IsSubring . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.3.3 Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.3.4 IsIdeal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8.3.5 LeftIdeal . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8.3.6 IsLeftIdeal. . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8.3.7 RightIdeal . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.3.8 IsRightIdeal . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CONTENTS 5 8.3.9 Operations for (left-, right-) ideals . . . . . . . . . . . . . 63 8.3.10 Rad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.3.11 IsModularLeftIdeal . . . . . . . . . . . . . . . . . . . . . . 64 8.3.12 IsMaximalIdeal . . . . . . . . . . . . . . . . . . . . . . . . 64 8.3.13 IsMaximalLeftIdeal . . . . . . . . . . . . . . . . . . . . . . 64 8.3.14 IsMaximalRightIdeal . . . . . . . . . . . . . . . . . . . . . 64 8.3.15 IsPrimeIdeal . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.3.16 QuickIdealElements . . . . . . . . . . . . . . . . . . . . . 65 8.3.17 QuickLeftIdealElements . . . . . . . . . . . . . . . . . . . 65 8.3.18 QuickRightIdealElements . . . . . . . . . . . . . . . . . . 65 8.3.19 Subrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.3.20 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.3.21 LeftIdeals . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.3.22 RightIdeals . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.3.23 IsSimple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.4 Factor Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.4.1 FactorRing . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.4.2 IsFactorRing . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4.3 FactorRingElement . . . . . . . . . . . . . . . . . . . . . . 68 8.5 Decomposition of Rings . . . . . . . . . . . . . . . . . . . . . . . 69 8.5.1 SubdirectDecomposition . . . . . . . . . . . . . . . . . . . 69 8.5.2 PartialDecomposition . . . . . . . . . . . . . . . . . . . . 71 8.6 Radical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 CONTENTS 6 8.6.1 IsNilpotentElement . . . . . . . . . . . . . . . . . . . . . . 72 8.6.2 Nilpotents . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.6.3 IsNilIdeal . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.6.4 Nilradical . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.6.5 JacobsonRadical . . . . . . . . . . . . . . . . . . . . . . . 73 8.6.6 IsJacobsonRadicalRing. . . . . . . . . . . . . . . . . . . . 73 8.6.7 IsSemisimple . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.7 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 8.7.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 8.7.2 Lpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 8.7.3 ReducegModf . . . . . . . . . . . . . . . . . . . . . . . . . 75 8.7.4 NormalFormOfgModF . . . . . . . . . . . . . . . . . . . . 75 8.7.5 GroebnerBasis . . . . . . . . . . . . . . . . . . . . . . . . 76 8.8 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 8.8.1 RingOperationTables. . . . . . . . . . . . . . . . . . . . . 77 8.8.2 Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 8.9 Deja vu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8.9.1 in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8.9.2 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8.9.3 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 CONTENTS 7 A Algebraic details 81 A.1 The Abstract Definition of a Ring . . . . . . . . . . . . . . . . . 81 A.2 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A.3 Zorn’s Lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 A.4 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 B Source Code 84 B.1 The Source File ringplus . . . . . . . . . . . . . . . . . . . . . . 84 B.2 The Source File dispatch.l. . . . . . . . . . . . . . . . . . . . . 85 B.3 The Source File factor.l . . . . . . . . . . . . . . . . . . . . . . 98 B.4 The Source File subdec.l . . . . . . . . . . . . . . . . . . . . . . 101 B.5 The Source File radical.l . . . . . . . . . . . . . . . . . . . . . 103 B.6 The Source File misc.l . . . . . . . . . . . . . . . . . . . . . . . 122 B.7 The Source File ideals.l . . . . . . . . . . . . . . . . . . . . . . 128 Chapter 1 Universal Algebra Nothing will come of nothing. William Shakespeare (1564–1616) Algebraicstructuresassemigroups,groups,rings,nearrings,etc. haveniceprop- erties in common. Therefore it seems useful to define certain things generally and use the results in each of the various structures. 1.1 Algebras Definition 1 An algebra A is a tuple (A,◦ ,...,◦ ,(cid:63) ,...,(cid:63) ,Ω), where A is a set, ◦ ,...,◦ are binary operations 1 m 1 n 1 m on A and (cid:63) ,...,(cid:63) are external operations on A with operator domain Ω. τ := 1 n (m,n,Ω) is called the type of A. If n=0 we write (m) instead of (m,0,∅). A subset of the class of all algebras of the same type is called a class of algebras. Definition 2 Let {A : λ ∈ Λ} be a family of algebras of the same type λ (n,m,Ω) and the same class, where the binary (external) operations of A are λ ◦λ,...,◦λ ((cid:63)λ,...,(cid:63)λ). On the cartesian product of the sets A we can de- 1 n 1 m i fine an algebra of the same class, defining as binary (external) operations the ”componentwise operations”: (aλ)λ∈Λ◦i(bλ)λ∈Λ :=(aλ◦λi bλ)λ∈Λ ω(cid:63)j (aλ)λ∈Λ :=(ω(cid:63)λj aλ)λ∈Λ for all i∈{1,...,n}, j ∈{1,...,m}. This algebra is called the (direct)product of the algebras A , denoted A . λ (cid:81)λ∈Λ λ 8 CHAPTER 1. UNIVERSAL ALGEBRA 9 Definition 3 Let A, the algebra above, be of class C. Then B ⊆ A together with all operations of A forms an algebra B of the same class if B is closed under all operations of A. B is called a C-subalgebra of A. We denote this B ≤C A or without an index if it’s clear from the context. Definition 4 The set {(...,a ,...):only finitely many a (cid:54)=0} induces a sub- λ λ algebra of A , called the direct sum of the A . We write A . (cid:81)λ∈Λ λ λ (cid:76)λ∈Λ λ Definition 5 Let S beaset, ◦abinaryoperation on S, (cid:63)anexternaloperation on S with operator domain Ω and R a relation in S. R is compatible with ◦ iff ∀a,b,a˜,˜b ∈ S : (aRb)∧(a˜R˜b) =⇒ (a◦a˜)R(b◦˜b). R is compatible with (cid:63) iff ∀a,b ∈ S,λ ∈ Ω : aRb =⇒ (λ(cid:63)a)R(λ(cid:63)b). A congruence on A is an equivalence-relation, that is compatible with all operations on S. Definition 6 Let A be the algebra above, ∼ a congruence in A. On A/∼ we define [a]˜◦ [b]:=[a◦ b] and λ˜(cid:63) [a]:=[λ(cid:63) a]. i i j j Then A/∼ := (A/∼,˜◦1,...,˜◦m,˜(cid:63)1,...,˜(cid:63)n,Ω) is an algebra of the same type, called the factor algebra of A w.r.t. ∼. If A/∼ is of the same class C as A, we call A/∼ a C-factor algebra. Definition 7 Let R=(R,◦ ,...,◦ ,(cid:63) ,...,(cid:63) ,Ω), 1 m 1 n S = (S,◦ ,...,◦ ,(cid:63) ,...,(cid:63) ,Ω) be two algebras. A mapping h : R → S is 1 m 1 n called a homomorphism iff for all r ,r ∈ R, for all 1 ≤ i ≤ m and for all 1 2 1≤j ≤n h(r ◦ r ) = h(r )◦ h(r ) 1 i 2 1 i 2 h(r (cid:63) r ) = h(r )(cid:63) h(r ) 1 j 2 1 j 2 If a homomorphism h is injective, we call h a monomorphism. If it is sur- jective an epimorphism, a bijective homomorphism is called an isomorphism. Homomorphisms from R into R are called endomorphisms, bijective ones au- tomorphisms. The Kernel of h ker(h) is the relation on R defined by a ∼ h b : ⇐⇒ h(a) = h(b). The Image of h is the algebra induced by the set h(R). Finally be Hom(R,S) the set of all homomorphisms from R to S and End(R)=Hom(R,R). Remark 1 ker(h) is always a congruence on R. Im(h) is always a subalgebra of S. Example 1 Let K be a field. Then a vector space V over K forms an alge- bra of type (1,1,K) with coordinatewise addition and multiplication with field elements. Subalgebras are exactly the subspaces, homomorphisms correspond to linear functions, factor algebras are factor spaces.

Description:
William Shakespeare (1564–1616). Algebraic structures Homomorphisms from R into R are called endomorphisms, bijective ones au- tomorphisms.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.