ebook img

Business Statistics for Competitive Advantage with Excel 2010: Basics, Model Building, and Cases PDF

469 Pages·2012·27.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Business Statistics for Competitive Advantage with Excel 2010: Basics, Model Building, and Cases

B usiness Statistics for Competitive Advantage with Excel 2010 Cynthia Fraser Business Statistics for Competitive Advantage with Excel 2010 Basics, Model Building, and Cases Second Edition Cynthia Fraser University of Virginia Charlottesville, VA, USA [email protected] ISBN 978-1-4419-9856-9 e-ISBN 978-1-4419-9857-6 DOI 10.1007/978-1-4419-9857-6 SpringerNew York Dordrecht Heidelberg London Library of Congress Control Number: 2011938464 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimiliar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To Len Lodish who taught me to include decision makers in the model building process Contents Preface...........................................................................................................................................xv Chapter 1 Statistics for Decision Making and Competitive Advantage................................1 1.1 Statistical Competences Translate into Competitive Advantages .........................................1 1.2 The Path toward Statistical Competence and Competitive Advantage .................................2 1.3 Use Excel for Competitive Advantage ..................................................................................2 14 StatisticalCompetenceIsPowerfulandYours .....................................................................3 Chapter 2 Describing Your Data..............................................................................................5 2.1 Describe Data with Summary Statistics and Histograms ......................................................5 Example 2.1 Yankees’ Salaries: Is It a Winning Offer? .......................................................5 2.2 Outliers Can Distort the Picture ............................................................................................8 Example 2.2 Executive Compensation: Is the Board’s Offer on Target? .............................8 2.3 Round Descriptive Statistics ...............................................................................................11 2.4 Share the Story that Your Graphics Illustrate .....................................................................11 2.5 Central Tendency, Dispersion, and Skewness Describe Data .............................................11 2.6 Data Are Measured with Quantitative or Categorical Scales ..............................................11 2.7 Continuous Data Are Sometimes Normal ..........................................................................13 Example 2.3 Normal SAT Scores ........................................................................................13 2.8 The Empirical Rule Simplifies Description ........................................................................13 ’ Example 2.4 Class of 10 SATs: This Class Is Normal and Exceptional ............................14 2.9 Describe Categorical Variables Graphically: Column and PivotCharts ............................15 Example 2.5 Who Is Honest and Ethical? ..........................................................................15 2.10 Descriptive Statistics Depend on the Data and Your Packaging ........................................16 Excel 2.1 Produce Descriptive Statistics and Histograms ..................................................................17 Executive Compensation .....................................................................................................17 Excel 2.2 Sort to Produce Descriptives Without Outliers ...................................................................21 Excel 2.3 Plot a Cumulative Distribution ...........................................................................................23 Excel 2.4 Find and View Distribution Percentages with a PivotChart ...............................................25 Class of ’10 Math SATs ......................................................................................................25 Excel 2.5 Produce a Column Chart of a Nominal Variable ................................................................29 Excel Shortcuts at Your Fingertips by Shortcut Key ..........................................................33 Significant Digits Guidelines ..............................................................................................39 Lab 2 Descriptive Statistics ................................................................................................41 A Typical Executive’s Compensation ................................................................................41 Hollywood Politics .............................................................................................................42 Assignment 2-1 Procter & Gamble’s Global Advertising ..................................................43 Assignment 2-2 Best Practices Survey ...............................................................................43 vii viii Contents Assignment 2-3 Shortcut Challenge ...................................................................................44 CASE 2-1 VW Backgrounds ..............................................................................................44 Chapter 3 Hypothesis Tests, Confidence Intervals, and Simulation to Infer Population Characteristics and Differences .......................................................45 3.1 Sample Means Are Random Variables ...............................................................................45 Example 3.1 Thirsty on Campus: Is There Sufficient Demand? .........................................45 3.2 Infer Whether a Population Mean Exceeds a Target ..........................................................50 3.3 Confidence Intervals Estimate the Population Mean ..........................................................52 3.4 Calculate Approximate Confidence Intervals with Mental Math .......................................54 3.5 Margin of Error Is Inversely Proportional To Sample Size ................................................55 3.6 Samples Are Efficient .........................................................................................................56 3.7 Use Monte Carlo Simulation Samples to Incorporate Uncertainty and Quantify Implications of Assumptions ........................................................................57 3.8 Determine Whether Two Segments Differ with Student t .................................................60 Example 3.2 SmartScribe: Is Income a Useful Base for Segmentation? ............................60 3.9 Estimate the Extent of Difference Between Two Segments ...............................................62 3.10 Confidence Intervals Complement Hypothesis Tests .........................................................64 3.11 Estimate a Population Proportion from a Sample Proportion .............................................64 Example 3.3 Guinea Pigs ....................................................................................................64 3.12 Conditions for Assuming Approximate Normality .............................................................66 3.13 Conservative Confidence Intervals for a Proportion ...........................................................66 3.14 Assess the Difference Between Alternate Scenarios or Pairs .............................................68 Example 3.4 Are “Socially Desirable” Portfolios Undesirable? .......................................69 3.15 Inference from Sample to Population .................................................................................72 Excel 3.1 Test the Level of a Population Mean with a One Sample t Test .........................................74 Thirsty on Campus ..............................................................................................................74 Excel 3.2 Make a Confidence Interval for a Population Mean ...........................................................75 Excel 3.3 Illustrate Confidence Intervals with Column Charts ...........................................................76 T-Mobile’s Service .............................................................................................................76 Excel 3.4 Conduct a Monte Carlo Simulation ....................................................................................80 Excel 3.5 Test the Difference Between Two Segment Means with a Two Sample t Test ..................86 Pampers Preemies ...............................................................................................................86 Excel 3.6 Construct a Confidence Interval for the Difference Between Two Segments ....................87 Excel 3.7 Illustrate the Difference Between Two Segment Means with a Column Chart ..................88 Excel 3.8 Construct a Pie Chart of Shares ..........................................................................................90 Moral Acceptance of Medical Testing on Animals ............................................................90 Excel 3.9 Test the Difference in Between Alternate Scenarios or Pairs with a Paired t Test..............93 Difference Between Conventional and Socially Desirable Portfolio Ratings.....................93 Excel 3.10 Construct a Confidence Interval for the Difference Between Alternate Scenarios or Pairs.................................................................................................................94 Lab Practice 3 Inference......................................................................................................97 Cingular’s Position in the Cell Phone Service Market........................................................97 Contents i x Value of a Nationals Uniform..............................................................................................97 Extra Value of a Phillies Uniform.......................................................................................98 Confidence in Chinese Imports ...........................................................................................98 Lab 3 Inference: Dell PDA Plans.........................................................................................99 Assignment 3-1The Marriott Difference............................................................................101 Assignment 3-2 Bottled Water Possibilities......................................................................101 Assignment 3-3 Immigration in the United States.............................................................102 Assignment 3-4 McLattes..................................................................................................103 Assignment 3-5 A Barbie Duff in Stuff.............................................................................103 CASE 3-1 Yankees Versus Marlins: The Value of a Yankee Uniform.............................103 CASE 3-2 Gender Pay.......................................................................................................104 CASE 3-3 Polaski Vodka: Can a Polish Vodka Stand Up to the Russians?......................105 CASE 3-4 American Girl in Starbucks..............................................................................107 Chapter 4 Quantifying the Influence of Performance Drivers and Forecasting: Regression...............................................................................109 4.1 The Simple Linear Regression Equation Describes the Line................................................... Relating a Decision Variable to Performance....................................................................109 Example 4.1 HitFlix Movie Rentals...................................................................................110 4.2 F Tests Significance of the Hypothesized Linear Relationship R Square Summarizes Its Strength and Standard Error Reflects Forecasting Precision...................111 4.3 Test and Infer the Slope.....................................................................................................116 4.4 Analyze Residuals to Learn Whether Assumptions Are Met............................................118 4.5 Prediction Intervals Estimate Average Response..............................................................120 4.6 Use Sensitivity Analysis to Explore Alternative Scenarios...............................................121 4.7 Explanation and Prediction Create a Complete Picture.....................................................122 4.8 Present Regression Results in Concise Format..................................................................123 4.9 Assumptions We Make When We Use Linear Regression................................................123 4.10 Correlation Reflects Linear Association............................................................................124 Example 4.2 HitFlix Movie Rentals...................................................................................124 4.11 Correlation Coefficients Are Key Components of Regression Slopes..............................128 Example 4.3 Pampers........................................................................................................129 4.12 Correlation Complements Regression...............................................................................131 4.13 Linear Regression Is Doubly Useful..................................................................................132 Excel 4.1 Build a Simple Linear Regression Model: Impact of Titles Offered on HitFlix Movie Rental Revenues.....................................................................................................133 Excel 4.2 Construct Prediction Intervals............................................................................................135 Excel 4.3 Find Correlations Between Variable Pairs.........................................................................142 Lab Practice 4 Oil Price Forecast.......................................................................................145 Lab 4 Simple Regression Dell Slimmer PDA....................................................................147 CASE 4-1 GenderPay (B) .................................................................................................149 CASE 4-2 GM Revenue Forecast......................................................................................149 Assignment 4-1 Impact of Defense Spending on Economic Growth................................151 x Contents Chapter 5 Market Simulation and Segmentation with Descriptive Statistics, Inference, Hypothesis Tests, and Regression.....................................................153 5.1 CASE 5-1 Simulation and Segmentation of the Market for Preemie Diapers...................153 5.2 Use PowerPoints to Present Statistical Results for Competitive Advantage.....................164 5.3 Write Memos That Encourage Your Audience to Read and Use Results..........................171 MEMO Re: Importance of Fit Drives Trial Intention........................................................173 Chapter 6 Finance Application: Portfolio Analysis with a Market Index as a Leading Indicator in Simple Linear Regression........................................175 6.1 Rates of Return Reflect Expected Growth of Stock Prices................................................175 Example 6.1 General Electric and Apple Returns.............................................................175 6.2 Investors Trade Off Risk and Return.................................................................................177 6.3 Beta Measures Risk...........................................................................................................177 6.4 A Portfolio Expected Return, Risk, and Beta Are Weighted Averages of Individual Stocks...........................................................................................................180 Example 6.2 Three Alternate Portfolios............................................................................181 6.5 Better Portfolios Define The Efficient Frontier.................................................................182 MEMO Re: Recommended Portfolios are Diversified......................................................184 6.6 Portfolio Risk Depends on Correlations with the Market and Stock Variability...............185 Excel 6.1 Estimate Portfolio Expected Rate of Return and Risk.......................................................186 Three Portfolios with Exxon Mobil, IBM, and Apple.......................................................186 Correlations between stocks and the market .....................................................................186 Excel 6.2 Plot Return by Risk to Identify Dominant Portfolios and the Efficient Frontier...............188 Assignment 6-1 Individual Stocks’ Beta Estimates...........................................................192 Assignment 6-2 Expected Returns and Beta Estimates of Alternate Portfolios................192 Chapter 7 Association between Two Categorical Variables: Contingency Analysis with Chi Square....................................................................................................193 7.1 Evidence of Association when Conditional Probabilities Differ from Joint Probabilities.......................................................................................................................193 Example 7.1 Recruiting Stars............................................................................................194 7.2 Chi Square Tests Association Between Two Categorical Variables.................................195 7.3 Chi Square Is Unreliable If Cell Counts Are Sparse..........................................................197 7.4 Simpson’s Paradox Can Mislead.......................................................................................199 Example 7.2 American Cars..............................................................................................199 MEMO Re.: Country of Assembly Does Not Affect Older Buyers’ Choices...................204 7.5 Contingency Analysis Is Demanding.................................................................................205 7.6 Contingency Analysis Is Quick, Easy, and Readily Understood.......................................205 Excel 7.1 Construct Crosstabulations and Assess Association Between Categorical Variables with PivotTables and PivotCharts......................................................................................206 American Cars...................................................................................................................206

Description:
Exceptional managers know that they can create competitive advantages by basing decisions on performance response under alternative scenarios. To create these advantages, managers need to understand how to use statistics to provide information on performance response under alternative scenarios. Thi
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.