ebook img

Business Mathematics lecture: integral calculus PDF

0.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Business Mathematics lecture: integral calculus

Department of Mathemati s, Mahidol University Kit Tyabandha, PhD Integral al ulus th 10 January 2005 0 De(cid:12)nition 1. Let f(x) be a fun tion, and let f (x) be its derivative. The reverse pro ess of di(cid:11)erentiation is alled antidi(cid:11)erentiation or integration. It gives us the original fun tion, whi h is alled the antiderivative or integral of f(x). x Theorem 1. Let , n and k be onstants. Then a. Z kdx=kx+ b. Z dx=x+ . Z n 1 n+1 x dx= x + ; n6=(cid:0)1 n+1 d. Z (cid:0)1 x dx=lnx+ ; x>0 e. Z (cid:0)1 x dx=lnjxj+ ; 06=x<0 f. Z kx 1 kx e dx= e + k g. Z Z kf(x)dx=k f(x)dx h. Z Z Z (f(x)(cid:6)g(x))= f(x)dx(cid:6) g(x)dx i. Z Z (cid:0)f(x)dx=(cid:0) f(x)dx x P n i De(cid:12)nition 2. The approximation (i = 1) (f(xi)(cid:1)x ) of the area under a ontinuous urve A is alled a Riemann sum. That area under the urve is Xn A= lim f(xi)(cid:1)xi n!1 i=1 x Theorem 2. Let F(x) be the integral of f(x). We all the fundamental theorem of al ulus the expression. Z b b f(x)dx= F(x)ja =F(b)(cid:0)F(a) a x Theorem 3. a. Z b Z a f(x)dx=(cid:0) f(x)dx a b b. Z a f(x)dx=F(a)(cid:0)F(a)=0 a th Business Mathemati s, Integral al ulus {1{ From 5 Nov 05, as of 10 January, 2006 Department of Mathemati s, Mahidol University Kit Tyabandha, PhD . Z Z b Z f(x)dx= f(x)dx+ f(x)dx; a(cid:20)b(cid:20) a a b d. Z b Z b Z b f(x)dx(cid:6) g(x)dx= (f(x)(cid:6)g(x))dx a a a e. Z b Z b kf(x)dx=k f(x)dx a a x Property d of Theorem 3 is used to (cid:12)nd the area between two urves. Theorem 4. The pro ess of integration by parts is Z Z 0 0 (f(x)(cid:1)g (x))dx=f(x)(cid:1)g(x)(cid:0) (g(x)(cid:1)f (x))dx Proof. From d 0 0 (f(x)(cid:1)g(x))=f(x)(cid:1)g (x)+g(x)(cid:1)f (x) dx we have Z Z 0 0 f(x)(cid:1)g(x)= (f(x)(cid:1)g (x))dx+ (g(x)(cid:1)f (x))dx { Bibliography Edward T Dowling. Mathemati al methods for business and e onomi s. S haum's outline series, 1993 th Business Mathemati s, Integral al ulus {2{ From 5 Nov 05, as of 10 January, 2006

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.