ebook img

Buildings PDF

757 Pages·2008·10.743 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Buildings

248 GraduateTextsinMathematics EditorialBoard S.Axler K.A.Ribet GraduateTextsinMathematics 1 Takeuti/Zaring.Introductionto 39 Arveson.AnInvitationtoC-Algebras. AxiomaticSetTheory.2nded. 40 Kemeny/Snell/Knapp.Denumerable 2 Oxtoby.MeasureandCategory.2nded. MarkovChains.2nded. 3 Schaefer.TopologicalVectorSpaces. 41 Apostol.ModularFunctionsandDirichlet 2nded. SeriesinNumberTheory.2nded. 4 Hilton/Stammbach.ACoursein 42 J.-P.Serre.LinearRepresentationsof HomologicalAlgebra.2nded. FiniteGroups. 5 MacLane.CategoriesfortheWorking 43 Gillman/Jerison.RingsofContinuous Mathematician.2nded. Functions. 6 Hughes/Piper.ProjectivePlanes. 44 Kendig.ElementaryAlgebraicGeometry. 7 J.-P.Serre.ACourseinArithmetic. 45 Loève.ProbabilityTheoryI.4thed. 8 Takeuti/Zaring.AxiomaticSetTheory. 46 Loève.ProbabilityTheoryII.4thed. 9 Humphreys.IntroductiontoLieAlgebras 47 Moise.GeometricTopologyin andRepresentationTheory. Dimensions2and3. 10 Cohen.ACourseinSimpleHomotopy 48 Sachs/Wu.GeneralRelativityfor Theory. Mathematicians. 11 Conway.FunctionsofOneComplex 49 Gruenberg/Weir.LinearGeometry. VariableI.2nded. 2nded. 12 Beals.AdvancedMathematicalAnalysis. 50 Edwards.Fermat’sLastTheorem. 13 Anderson/Fuller.RingsandCategories ofModules.2nded. 51 Klingenberg.ACourseinDifferential 14 Golubitsky/Guillemin.StableMappings Geometry. andTheirSingularities. 52 Hartshorne.AlgebraicGeometry. 15 Berberian.LecturesinFunctional 53 Manin.ACourseinMathematicalLogic. AnalysisandOperatorTheory. 54 Graver/Watkins.Combinatoricswith 16 Winter.TheStructureofFields. EmphasisontheTheoryofGraphs. 17 Rosenblatt.RandomProcesses.2nded. 55 Brown/Pearcy.IntroductiontoOperator 18 Halmos.MeasureTheory. TheoryI:ElementsofFunctionalAnalysis. 19 Halmos.AHilbertSpaceProblemBook. 56 Massey.AlgebraicTopology:An 2nded. Introduction. 20 Husemoller.FibreBundles.3rded. 57 Crowell/Fox.IntroductiontoKnot 21 Humphreys.LinearAlgebraicGroups. Theory. 22 Barnes/Mack.AnAlgebraicIntroduction 58 Koblitz.p-adicNumbers,p-adic toMathematicalLogic. Analysis,andZeta-Functions.2nded. 23 Greub.LinearAlgebra.4thed. 59 Lang.CyclotomicFields. 24 Holmes.GeometricFunctionalAnalysis 60 Arnold.MathematicalMethodsin andItsApplications. ClassicalMechanics.2nded. 25 Hewitt/Stromberg.RealandAbstract 61 Whitehead.ElementsofHomotopy Analysis. Theory. 26 Manes.AlgebraicTheories. 62 Kargapolov/Merizjakov.Fundamentals 27 Kelley.GeneralTopology. oftheTheoryofGroups. 28 Zariski/Samuel.CommutativeAlgebra. 63 Bollobas.GraphTheory. Vol.I. 64 Edwards.FourierSeries.Vol.I.2nded. 29 Zariski/Samuel.CommutativeAlgebra. 65 Wells.DifferentialAnalysisonComplex Vol.II. Manifolds.2nded. 30 Jacobson.LecturesinAbstractAlgebraI. 66 Waterhouse.IntroductiontoAffine BasicConcepts. GroupSchemes. 31 Jacobson.LecturesinAbstractAlgebraII. 67 Serre.LocalFields. LinearAlgebra. 68 Weidmann.LinearOperatorsinHilbert 32 Jacobson.LecturesinAbstractAlgebraIII. Spaces. TheoryofFieldsandGaloisTheory. 33 Hirsch.DifferentialTopology. 69 Lang.CyclotomicFieldsII. 34 Spitzer.PrinciplesofRandomWalk. 70 Massey.SingularHomologyTheory. 2nded. 71 Farkas/Kra.RiemannSurfaces.2nded. 35 Alexander/Wermer.SeveralComplex 72 Stillwell.ClassicalTopologyand VariablesandBanachAlgebras.3rded. CombinatorialGroupTheory.2nded. 36 Kelley/Namiokaetal.Linear 73 Hungerford.Algebra. TopologicalSpaces. 74 Davenport.MultiplicativeNumber 37 Monk.MathematicalLogic. Theory.3rded. 38 Grauert/Fritzsche.SeveralComplex 75 Hochschild.BasicTheoryofAlgebraic Variables. GroupsandLieAlgebras. (continuedafterindex) Peter Abramenko Kenneth S. Brown Buildings Theory and Applications (cid:65)(cid:66)(cid:67) PeterAbramenko KennethS.Brown DepartmentofMathematics DepartmentofMathematics UniversityofVirginia CornellUniversity Charlottesville,VA22904 Ithaca,NY14853 USA USA [email protected] [email protected] EditorialBoard S.Axler K.A.Ribet MathematicsDepartment MathematicsDepartment SanFranciscoStateUniversity UniversityofCaliforniaatBerkeley SanFrancisco,CA94132 Berkeley,CA94720-3840 USA USA [email protected] [email protected] ISBN:978-0-387-78834-0 e-ISBN:978-0-387-78835-7 LibraryofCongressControlNumber:2008922933 Mathematics Subject Classification (2000): (Primary) 51E24, 20E42, 20F55, 51F15, (Secondary) 14L35,20F05,20F65,20G15,20J05,22E40,22E65 ©2008SpringerScience+BusinessMedia,LLC BasedinpartonBuildings,KennethS.Brown,1989,1998 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork, NY10013,USA)andtheauthor,exceptforbriefexcerptsinconnectionwithreviewsorscholarly analysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronicadaptation, computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedis forbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. Printedonacid-freepaper. 987654321 springer.com To our wives, Monika and Susan Preface This text started out as a revised version of Buildings by the second-named author [53], but it has grown into a much more voluminous book. The earlier bookwasintendedtogiveashort,friendly,elementaryintroductiontothethe- ory,accessibletoreaderswithaminimalbackground.Moreover,itapproached buildings from only one point of view, sometimes called the “old-fashioned” approach: A building is a simplicial complex with certain properties. The current book includes all the material of the earlier one, but we have added a lot. In particular, we have included the “modern” (or “W-metric”) approach to buildings, which looks quite different from the old-fashioned ap- proach but is equivalent to it. This has become increasingly important in the theory and applications of buildings. We have also added a thorough treat- ment of the Moufang property, which occupies two chapters. And we have added many new exercises and illustrations. Some of the exercises have hints orsolutionsinthebackofthebook.Amoreextensivesetofsolutionsisavail- able in a separate solutions manual, which may be obtained from Springer’s Mathematics Editorial Department. Wehavetriedtoaddthenewmaterialinsuchawaythatreaderswhoare contentwiththeold-fashionedapproachcanstillgetanelementarytreatment of it by reading selected chapters or sections. In particular, many readers will want to omit the optional sections (marked with a star). The introduction below provides more detailed guidance to the reader. In spite of the fact that the book has almost quadrupled in size, we were still not able to cover all important aspects of the theory of buildings. For example, we give very little detail concerning the connections with incidence geometry. And we do not prove Tits’s fundamental classification theorems for spherical and Euclidean buildings. Fortunately, the recent books of Weiss [281,283] treat these classification theorems thoroughly. Applicationsofbuildingstovariousaspectsofgrouptheoryoccurinseveral chaptersofthebook,startinginChapter6.Inaddition,Chapter13isdevoted toapplicationstothecohomologytheoryofgroups,whileChapter14sketches a variety of other applications. viii Preface Most of the material in this book is due to Jacques Tits, who originated the theory of buildings. It has been a pleasure studying Tits’s work. We were especially pleased to learn, while this book was in the final stages of produc- tion,thatTitswasnamedasacorecipientofthe2008Abelprize.Thecitation states: Titscreatedanewandhighlyinfluentialvisionofgroupsasgeomet- ric objects. He introduced what is now known as a Tits building, which encodes in geometric terms the algebraic structure of linear groups. The theory of buildings is a central unifying principle with an amazing range of applications.... We hope that our exposition helps make Tits’s beautiful ideas accessible to a broad mathematical audience. We are very grateful to Pierre-Emmanuel Caprace, Ralf Gramlich, Bill Kantor, Bernhard Mu¨hlherr, Johannes Rauh, Hendrik Van Maldeghem, and RichardWeissformanyhelpfulcommentsonapreliminarydraftofthisbook. Wewouldalsoliketothankallthepeoplewhohelpeduswiththeapplications of buildings that we discuss in Chapter 14; their names are mentioned in the introduction to that chapter. Charlottesville, VA, and Ithaca, NY Peter Abramenko June 2008 Kenneth S. Brown Contents Preface ........................................................ vii Introduction................................................... 1 0.1 Coxeter Groups and Coxeter Complexes ................... 2 0.2 Buildings as Simplicial Complexes ........................ 4 0.3 Buildings as W-Metric Spaces ............................ 5 0.4 Buildings and Groups ................................... 6 0.5 The Moufang Property and the Classification Theorem ...... 6 0.6 Euclidean Buildings ..................................... 7 0.7 Buildings as Metric Spaces............................... 7 0.8 Applications of Buildings ................................ 8 0.9 A Guide for the Reader.................................. 8 1 Finite Reflection Groups ................................... 9 1.1 Definitions ............................................. 9 1.2 Examples .............................................. 11 1.3 Classification........................................... 15 1.4 Cell Decomposition ..................................... 17 1.4.1 Cells ........................................... 17 1.4.2 Closed Cells and the Face Relation................. 19 1.4.3 Panels and Walls ................................ 21 1.4.4 Simplicial Cones................................. 23 1.4.5 A Condition for a Chamber to Be Simplicial ........ 24 1.4.6 Semigroup Structure ............................. 25 1.4.7 Example: The Braid Arrangement ................. 28 1.4.8 Formal Properties of the Poset of Cells ............. 29 1.4.9 The Chamber Graph ............................. 30 1.5 The Simplicial Complex of a Reflection Group.............. 35 1.5.1 The Action of W on Σ(W,V) ..................... 36 1.5.2 The Longest Element of W ....................... 40 1.5.3 Examples....................................... 41 x Contents 1.5.4 The Chambers Are Simplicial ..................... 45 1.5.5 The Coxeter Matrix.............................. 48 1.5.6 The Coxeter Diagram ............................ 49 1.5.7 Fundamental Domain and Stabilizers............... 51 1.5.8 The Poset Σ as a Simplicial Complex .............. 52 1.5.9 A Group-Theoretic Description of Σ ............... 53 1.5.10 Roots and Half-Spaces............................ 55 1.6 Special Properties of Σ .................................. 58 1.6.1 Σ Is a Flag Complex............................. 59 1.6.2 Σ Is a Colorable Chamber Complex................ 59 1.6.3 Σ Is Determined by Its Chamber System ........... 62 2 Coxeter Groups ............................................ 65 2.1 The Action on Roots .................................... 65 2.2 Examples .............................................. 67 2.2.1 Finite Reflection Groups.......................... 67 2.2.2 The Infinite Dihedral Group ...................... 67 2.2.3 The Group PGL (Z) ............................. 71 2 2.3 Consequences of the Deletion Condition ................... 78 2.3.1 Equivalent Forms of (D).......................... 78 2.3.2 Parabolic Subgroups and Cosets ................... 80 2.3.3 The Word Problem .............................. 85 *2.3.4 Counting Cosets................................. 88 2.4 Coxeter Groups......................................... 91 2.5 The Canonical Linear Representation...................... 92 2.5.1 Construction of the Representation ................ 93 2.5.2 The Dual Representation ......................... 95 2.5.3 Roots, Walls, and Chambers ...................... 96 2.5.4 Finite Coxeter Groups............................ 97 2.5.5 Coxeter Groups and Geometry .................... 99 2.5.6 Applications of the Canonical Linear Representation .100 *2.6 The Tits Cone..........................................102 2.6.1 Cell Decomposition ..............................103 2.6.2 The Finite Subgroups of W .......................105 2.6.3 The Shape of X .................................107 *2.7 Infinite Hyperplane Arrangements ........................107 3 Coxeter Complexes ........................................115 3.1 The Coxeter Complex ...................................115 3.2 Local Properties of Coxeter Complexes ....................119 3.3 Construction of Chamber Maps...........................124 3.3.1 Generalities .....................................124 3.3.2 Automorphisms .................................125 3.3.3 Construction of Foldings..........................126 3.4 Roots .................................................128 Contents xi 3.4.1 Foldings ........................................129 3.4.2 Characterization of Coxeter Complexes .............138 3.5 The Weyl Distance Function .............................144 3.6 Products and Convexity .................................146 3.6.1 Sign Sequences ..................................147 3.6.2 Convex Sets of Chambers.........................148 3.6.3 Supports .......................................149 3.6.4 Semigroup Structure .............................150 3.6.5 Applications of Products .........................156 3.6.6 Convex Subcomplexes ............................158 3.6.7 The Support of a Vertex..........................167 3.6.8 Links Revisited; Nested Roots.....................169 4 Buildings as Chamber Complexes ..........................173 4.1 Definition and First Properties ...........................173 4.2 Examples ..............................................177 4.3 The Building Associated to a Vector Space.................182 4.4 Retractions ............................................185 4.5 The Complete System of Apartments......................191 4.6 Subbuildings ...........................................194 4.7 The Spherical Case .....................................195 4.8 The Weyl Distance Function .............................198 4.9 Projections (Products) ..................................202 4.10 Applications of Projections...............................204 4.11 Convex Subcomplexes ...................................207 4.11.1 Chamber Subcomplexes ..........................208 *4.11.2 General Subcomplexes............................209 *4.12 The Homotopy Type of a Building ........................212 *4.13 The Axioms for a Thick Building .........................214 5 Buildings as W-Metric Spaces..............................217 5.1 Buildings of Type (W,S) ................................217 5.1.1 Definition and Basic Facts ........................218 5.1.2 Galleries and Words..............................221 5.2 Buildings as Chamber Systems ...........................223 5.3 Residues and Projections ................................226 5.3.1 J-Residues......................................226 5.3.2 Projections and the Gate Property.................229 5.4 Convexity and Subbuildings..............................233 5.4.1 Convex Sets.....................................233 5.4.2 Subbuildings ....................................235 *5.4.3 2-Convexity.....................................237 5.5 Isometries and Apartments...............................238 5.5.1 Isometries and σ-Isometries .......................238 5.5.2 Characterizations of Apartments...................240

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.