ebook img

Building Blocks of Quantum Mechanics: Theory and Applications PDF

265 Pages·2022·10.704 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Building Blocks of Quantum Mechanics: Theory and Applications

Building Blocks of Quantum Mechanics Building Blocks of Quantum Mechanics Theory and Applications Tao Xiang First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2022 Tao Xiang Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis- [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. ISBN: 978-1-032-00610-9 (hbk) ISBN: 978-0-367-77150-8 (pbk) ISBN: 978-1-003-17488-2 (ebk) DOI: 10.1201/9781003174882 Typeset in Nimbus Roman by KnowledgeWorks Global Ltd. Publisher’s note: This book has been prepared from camera-ready copy provided by the authors. Dedication Tomymother. Contents Preface.....................................................................................................................xiii Notations..................................................................................................................xv FormulasinSIunitsandGaussianunits................................................................xvii Tableoffundamentalconstants..............................................................................xix Chapter1 Introduction.....................................................................................1 1.1 Briefhistoryofquantummechanics.......................................1 1.2 Schro¨dingerequation..............................................................4 1.3 Probabilityinterpretationofwavefunction............................6 1.4 StationarySchro¨dingerequation.............................................8 1.5 Conservationofprobability....................................................8 1.6 Quantumsuperposition.........................................................10 1.6.1 Nocloningtheorem..................................................11 1.6.2 Schro¨dingercat........................................................12 1.7 Operators...............................................................................12 1.8 Quantummeasurement.........................................................13 1.8.1 Stern-Gerlachexperiment........................................14 1.9 Expectationvalues................................................................16 1.10 Problems...............................................................................17 Chapter2 One-dimensionalEigen-problem...................................................19 2.1 Symmetricpotentialandparity.............................................19 2.2 Freeparticle..........................................................................20 2.3 Delta-functionnormalization................................................23 2.4 Infinitesquarewellpotential ...............................................24 2.5 Finitesquarewellpotential..................................................27 2.5.1 Boundstates−V <E≤0........................................27 2.5.2 ScatteringstatesE>0.............................................31 2.6 Quantumtunneling...............................................................33 2.7 Delta-functionpotential........................................................35 2.7.1 Boundstate(α<0andE<0)...............................36 2.7.2 Scatteringstate(E>0)............................................37 2.8 TheWKBapproximation.....................................................38 2.8.1 Solutionaroundaturningpoint...............................40 vii viii Contents 2.8.2 Theconnectionformulae.........................................41 2.8.3 Quantizationofenergylevels...................................43 2.9 Problems...............................................................................45 Chapter3 Representationtheoryofquantumstates.......................................47 3.1 Representation......................................................................47 3.1.1 Diracbracketnotations............................................47 3.1.2 Representationofquantumstates............................48 3.1.3 Hermitianoperators.................................................49 3.1.4 EigenstatesofHermitianoperators..........................50 3.1.5 Representationofoperators.....................................53 3.1.6 RepresentationofSchro¨dingerequation..................53 3.1.7 Feynman-Hellmanntheorem...................................53 3.2 Basistransformation.............................................................54 3.2.1 Example:Fromrealtomomentumspacerepre- sentation...................................................................55 3.3 Commutators.........................................................................56 3.3.1 Propertiesofcommutableoperators........................56 3.3.2 Propertiesofnoncommutableoperators..................57 3.4 Schro¨dingerpicture...............................................................59 3.4.1 Virialtheorem..........................................................60 3.4.2 Ehrenfesttheorem....................................................60 3.5 Heisenbergpicture................................................................61 3.6 Uncertaintyprinciple............................................................62 3.7 Thetime-energyuncertaintyprinciple..................................64 3.8 Problems...............................................................................66 Chapter4 HarmonicOscillators.....................................................................69 4.1 One-dimensionalharmonicoscillator...................................69 4.1.1 Ladderoperators......................................................69 4.1.2 Eigen-spectrum........................................................70 4.1.3 Eigenfunction...........................................................71 4.1.4 Occupationrepresentation.......................................72 4.2 Coherentstate.......................................................................73 4.2.1 Minimumuncertaintystate......................................73 4.2.2 Wavefunctionofthecoherentstate.........................74 4.3 Chargedparticlesinanelectromagneticfield.......................75 4.3.1 Minimalcoupling.....................................................75 4.3.2 Gaugeinvariance......................................................76 4.3.3 Probabilitycurrent...................................................76 4.3.4 Aharonov-Bohmeffect............................................77 4.4 Landaulevels........................................................................79 4.4.1 Landaugauge...........................................................79 4.4.2 DegeneracyofLandaulevels...................................80 Contents ix 4.4.3 Symmetricgauge.....................................................81 4.4.4 LowestLandaulevel................................................82 4.5 Problems...............................................................................85 Chapter5 AngularMomentum......................................................................87 5.1 Orbitalangularmomentum...................................................87 5.2 Generalangularmomentum.................................................88 5.2.1 Matrix representation of angular momentum operators...................................................................90 5.3 Eigenfunctionsoforbitalangularmomentum......................91 5.4 Spinangularmomentum.......................................................95 5.4.1 Paulimatrices...........................................................95 5.4.2 EigenstatesofS=1/2.............................................96 5.4.3 QubitandBlochsphere............................................97 5.5 Additionoftwoangularmomenta........................................98 5.5.1 Clebsch-Gordancoefficients..................................100 5.5.2 AdditionoftwoS=1/2spins...............................101 ∗ 5.6 Wigner-Eckarttheorem .....................................................102 5.6.1 ProofoftheWigner-Eckarttheorem......................103 5.7 Problems.............................................................................105 Chapter6 Centralpotential..........................................................................107 6.1 Three-dimensionalpotentialwithsphericalsymmetry.......107 6.2 Hydrogenicatom................................................................109 6.2.1 Hamiltonianinthecenter-of-massframework......109 6.2.2 Boundstatesolutions.............................................110 6.2.3 Solutionsbyseriesexpansion................................111 6.2.4 Radialwavefunction.............................................113 6.2.5 Rydbergformula....................................................115 6.3 Partialwavemethod............................................................116 6.3.1 Partialwaveexpansion...........................................117 6.3.2 Scatteringamplitude..............................................119 6.3.3 Scatteringcrosssection..........................................120 6.3.4 Hard-spherescattering...........................................120 ∗ 6.4 Supersymmetricquantummechanicsapproach ................121 6.4.1 Supersymmetricsolutionofthehydrogenicatom.125 6.5 Problems.............................................................................128 Chapter7 IdenticalParticles........................................................................131 7.1 Permutationsymmetry........................................................131 7.2 Bose-EinsteinandFermi-Diracstatistics............................132 7.2.1 Exchangedegeneracy.............................................132 7.2.2 Anti-symmetrizedwavefunctions.........................133

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.