Buchberger-Zacharias Theory of Multivariate Ore 7 Extensions 1 0 2 MichelaCeria TeoMora n DipartimentodiMatematica DIMA a J Universita`diTrento Universita`diGenova 8 [email protected] [email protected] ] January 10,2017 A R . h Abstract t a WepresentBuchbergerTheoryandAlgorithmofGro¨bnerbasesformultivari- m ate Oreextensions of ringspresented as modules over a principal ideal domain. [ ThealgorithmsarebasedonMo¨llerLiftingTheorem. 1 Inher1978Bachelor’sthesis[53]ZachariasdiscussedhowtoextendBuchberger v Theory[7,8,10]fromthecaseofpolynomialringsoverafieldtothatofpolynomials 9 overaNoetherianringwithsuitableeffectivenessconditions. 9 Inthemeantimeasimilartaskwasperformedinaseriesofpapers—Kandri-Rody– 8 Kapur[20]mergedtherewritingrulesbehindEuclideanAlgorithmwithBuchberger’s 1 0 rewriting, proposing a Buchberger Theory for polynomial rings over Euclidean do- . mains;Pan[39]studiedBuchbergerTheoryforpolynomialringsoverdomainsintro- 1 ducingthenotionsofstrong/weakGro¨bnerbases—whichculminatedwith[34]. 0 7 Such unsorpassed paper, reformulating and improving Zacharias’ intuition, gave 1 efficientsolutionstocomputebothweakandstrongGro¨bnerbasesforpolynomialrings : overeachZachariasring,withparticolarattentiontothePIRcase.Itsmaincontribution v i isthereformulationofBuchbergertest/completion(“abasis F isGro¨bnerifandonly X if eachS-polynomialbetweentwo elementsof F, reducesto 0”)in the moreflexible r liftingtheorem(“abasisF isGro¨bnerifandonlyifeachelementinaminimalbasisof a thesyzygiesamongtheleadingmonomialslifts,viaBuchbergerreduction,toasyzygy amongtheelementsofF”). Theonlyfurthercontributiontothisultimatepaperisthe survey [6] of Mo¨ller’s results which reformulated them in terms of Szekeres Theory [50]. The suggestion of extendingBuchbergerTheory to non-commuativerings which satisfy Poincare´-Birkhoff-WittTheoremwas putforwardby Bergman[5], effectively appliedbyApel–Lassner[3,4]toLiealgebrasandfurtherextendedtosolvablepoly- nomialrings[21,22],skewpolynomialrings[15,16,17]andtootheralgebras[1,11, 25,26]whichsatisfyPoincare´-Birkhoff-WittTheoremandthus,underthestandardin- tepretationofBuchbergerTheoryintermsoffilration/graduations[2,29,32,49,28], havetheclassicalpolynomialringasassociatedgradedrings. 1 In particularWeispfenning [52] adapted his results to a generalizationof the Ore extension [38] proposed by Tamari [51] and its construction was generalized by his studentPesch[40,41]thusintroducingthenotionofiterativeOreextensionwithcom- mutingvariables R:=R[Y ;α ,δ ][Y ;α ,δ ] [Y ;α ,δ ], Radomain; 1 1 1 2 2 2 n n n ··· the concepthas been called Ore algebra in [12] and is renamed here as multivariate Oreextension(foradifferentandpromisingapproachtoOrealgebrassee[23]). Bergman’sapproachandmostofallextensionsareformulatedforringswhichare vector spaces over a field; in our knowledge the only instances in which the coeffi- cientring R is presentedas a D-moduleovera domainD (or at least as a Z-module) are Pritchard’s [42, 43] extension of Mo¨ller Lifting Theory to non-commutativefree algebrasandReinert’s[44,45]deepstudyofBuchbergerTheoryonFunctionRings. Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S]overaunitaryeffectiveringRandaneffectivemonoidS[31],weproposeherea Mo¨ller–PritchardliftingtheorempresentationofBuchberger-ZachariasTheoryandre- latedGro¨bnerbasiscomputationalgorithmsformultivariateOreextensions.Thetwist w.r.t. [31] is thatthereR[S]coincideswith itsassociated gradedring; hereR and its associatedgradedring G(R):=R[Y ;α ][Y ;α ] [Y ;α ] 1 1 2 2 n n ··· coincideassetsandasleftR-modulesbetweenthemselvesandwiththecommutative polynomialringR[Y , ,Y ],butasringshavedifferentmultiplications. 1 n ··· WebeginbyrecallingOre’soriginaltheory[38]ofnon-commutativepolynomials R[Y],relaxingtheoriginalassumptionthatRisafieldtothecaseinwhichRisadomain (Section 1.1) and Pesch’s constructions of multivariate Ore extensions (Section 1.2) and graded multivariate Ore extensions (Section 1.3), focusing on the arithmetics of themainExample14 R:=R[Y1;α1][Y2;α2] [Yn;αn],R:=Z[x] αi(x):=cixei,ci Z 0 ,ei N 0 . ··· ∈ \{ } ∈ \{ } NextweintroduceBuchbergerTheoryinmultivariateOreextensionsrecallingthe notionofterm-orderings(Section2.1),definitionandmainpropertiesofleft,right,bi- lateralandrestrictedGro¨bnerbases(Section2.2)andBuchbergerAlgorithmforcom- putingcanonicalformsinthecaseinwhichRisafield(Section2.3). WeadapttooursettingSzekeresTheory[50](Section3),Zachariascanonicalrep- resentationwithrelatedalgorithm(Section4)andMo¨llerLiftingTheorem(Section5). ThenextSectionsarethealgorithmiccoreofthepaper: wereformulateformulti- variateOreextensionsoveraZachariasring – Mo¨ller’s algorithm for computing the required Gebauer–Mo¨ller set (id est the minimalbasisofthemoduleofthesyzygiesamongtheleadingmonomials)for Buchbergertest/completionofleftweakbases(Section6.1); – hisreformulationofitwhichrequiresonlyl.c.m. computationinRforthecase inwhichRisaPIR(Section6.2); 2 – stillinthecaseinwhichRisaPIR,Mo¨ller’scompletionofaleftweakbasisto aleftstrongone(Section6.3); – Gebauer–Mo¨llercriteria[18]forproducingaGebauer–Mo¨llerset(Section6.4); – Kandri-Rody–Weispfenningcompletion[21]ofaleftweakbasesforproducing abilateralone(Section7.1); – Weispfenning’s[52]restrictedcompletion(Section7.2); – asatechnicaltoolrequiredbyWeispfenning’srestrictedcompletion,howtopro- ducerightGebauer–Mo¨llersets(Section7.3). Finally we reverseto a theoreticalsurveysummarizingthe structuraltheoremfor the case in which R is a Zacharias ring over a PID (Section 8), specializing to our setting Spear’s Theorem [48, 28] (Section 9) and extending to it Lazard’s Structural Theorem[24](Section10). In an appendixwe discuss, as far as it is possible, how to extend this theory and algorithmstothecaseinwhichRisaPIR(SectionA). 1 Recalls on Ore Theory 1.1 OreExtensions LetRbeanotnecessarilycommutativedomain;Ore[38]investigatedunderwhichcon- ditionstheR-moduleR:=R[Y]ofalltheformalpolynomialsismadearingunderthe assumptionthatthemultiplicationofpolynomialsshallbeassociativeandboth-sided distributive and the limitation imposed by the postulate that the degree of a product shallbeequaltothesumofthedegreeofthefactors. Itis clear that, due to the distributiveproperty,itsufficesto define the productof twomonomialsbYr aYs orevenmorespecifically,todefinetheproductY r,r R; · · ∈ thisnecessarilyrequirestheexistenceofmapsα,δ:R Rsuchthat → Y r=α(r)Y+δ(r)foreachr R; · ∈ Orecallsα(r)theconjugateandδ(r)thederivativeofr. Undertherequiredpostulateclearlywehave 1. foreachr R,α(r)=0 = r =0, ∈ ⇒ sothatαisinjective. Itismoreoversufficienttoconsider,foreachr,r R,therelations ′ ∈ α(r+r )Y+δ(r+r )=Y (r+r )=Y r+Y r = α(r)+α(r ) Y+δ(r)+δ(r ), ′ ′ ′ ′ ′ ′ · · · (cid:0) (cid:1) α(rr )Y+δ(rr )=Y (rr )=(Y r) r =α(r)α(r )Y+α(r)δ(r )+δ(r)r , ′ ′ ′ ′ ′ ′ ′ · · · and,ifRisaskewfield,andr,0, Y =(Y r) r 1 =α(r)α(r 1)Y+α(r)δ(r 1)+δ(r)r 1, − − − − · · todeducethat 3 2. αisaringendomorphism; 3. thefollowingconditionsareequivalent: (a) foreachd R 0 existsc R 0 :Y c=dY+δ(c),α(c)=d; ∈ \{ } ∈ \{ } · (b) αisaringautomorphism; 4. δisanα-derivationofRidestanadditivemapsatisfying δ(rr )=α(r)δ(r)+δ(r)r foreachr,r R; ′ ′ ′ ′ ∈ 5. ifRisaskewfield,theneachr R 0 satisfies ∈ \{ } α(r 1)=(α(r)) 1, δ(r 1)= (α(r)) 1δ(r)r 1; − − − − − − 6. Im(α) Risasubring,whichisanisomorphismcopyofR; ⊂ 7. R := r R:r=α(r) Risaring,theinvariantringofR; 1 { ∈ }⊂ 8. R := r R:δ(r)=0 Risaring,theconstantringofR; 0 { ∈ }⊂ 9. r R:Y r =rY =R R . 0 1 { ∈ · } ∩ 10. IfRisaskewfield,sucharealsoIm(α),R andR . 1 0 11. DenotingZ := z R:zr =rzforeachr R thecenterofR,wehave { ∈ ∈ } r R: f r=rf foreach f R =R R Z. 0 1 { ∈ · ∈ } ∩ ∩ Moreover,ifweconsidertwopolynomials f(Y),g(Y) R 0 , ∈ \{ } f =aYm+f ,g=bYn+g ,a,b R 0 ,m,n N, f ,g R,deg(f )<m,deg(g )<n, 0 0 0 0 0 0 ∈ \{ } ∈ ∈ wehave f g=aαm(b)Ym+n+h(Y),deg(h)<m+n; · sinceαisanendomorphism,b , 0 = α(b) , 0 = αm(b) , 0andsinceRisa ⇒ ⇒ domainitholdsαm(b),0,a = aαm(b),0 = f g,0. Asaconsequence ⇒ ⇒ · 12. Risadomain. Definition1. RwiththeringstructuredescribedaboveiscalledanOreextensionand isdenotedR[Y;α,δ]. Remark2(Ore). InanOreextensionR[Y;α,δ],denoting = α,δ thefreesemigroup S h i overthealphabet α,δ and,foreachd Nandi N,0 i d, thesetofthe d { } ∈ ∈ ≤ ≤ Sd,i i wordsin of lengthd in which occuriinstancesof αand d i instancesofδ in(cid:16)an(cid:17) S − arbitraryorder,wehave d Yd r= τ(r)Yi · Xi=0 τX∈Sd,i 4 foreachd N;forinstance ∈ Y3 r = α3(r)Y3+δ3(r) · + α2δ(r)+αδα(r)+δα2(r) Y2 (cid:16) (cid:17) + αδ2(r)+δαδ(r)+δ2α(r) Y. (cid:16) (cid:17) Inparticular,for f(Y)= n aYn iandg(Y)= m bYm i inRwehave i=0 i − i=0 i − P P n+m i i a g(Y)f(Y)= cYn+m i withc =b αm(a )andc = b − τ(a ). i − 0 0 0 i a b Xi=0 Xa=0 Xb=0τ∈SXm−a,i−a−b Remark3(Ore). Undertheassumptionthat(cf. 3.) αisanautomorphism,eachpoly- nomial n aYi Rcanbeuniquelyrepresentedas n Yia¯ forpropervaluesa¯ R. i=1 i ∈ i=1 i i ∈ In factwe haveax = xα 1(a) δ(α 1(a))fromwhichwe candeduceinductively P − − P − properexpressions n axn = xnα n(a)+ ( 1)ixn iσ (a). − − in − Xi=1 ⊓⊔ 1.2 MultivariateOreExtensions Definition4. AniterativeOreextensionisaring(whosemultiplicationwedenote⋆) definedas R:=R[Y ;α ,δ ][Y ;α ,δ ] [Y ;α ,δ ] 1 1 1 2 2 2 n n n ··· where, for eachi > 1, α is an endomorphismandδ an α-derivationof the iterative i i i Oreextension R :=R[Y ;α ,δ ] [Y ;α ,δ ]. i 1 1 1 1 i 1 i 1 i 1 − ··· − − − AmultivariateOreextension(or:Orealgebra[12];or:iterativeOreextensionwith commutingvariables[40,41])isaniterativeOreextensionwhichsatisfies – α δ =δα ,foreachi, j,i, j, j i i j – αα =α α,δδ =δ δ for j>i, i j j i i j j i – α (Y)=Y,δ (Y)=0for j>i. j i i j i ⊓⊔ Lemma5(Pesch). InaniterativeOreextension,foreachi< jitholds Y ⋆Y =YY α (Y)=Y,δ (Y)=0. j i i j j i i j i ⇐⇒ Proof. Foreachi< j,wehaveY ⋆Y =α (Y)Y +δ (Y). j i j i j j i ⊓⊔ Lemma6(Pesch). AniterativeOreextensionisamultivariateOreextensioniffY ⋆ j Y =YY foreachi< j. i i j 5 Proof. Infact,usingLemma5foreachr R,wehave ∈ Y ⋆Y ⋆r = Y ⋆(α(r)Y +δ(r)) j i j i i i = α (α(r)Y +δ(r))Y +δ (α(r)Y +δ(r)) j i i i j j i i i = α α(r)YY +α δ(r)Y +δ (α(r)Y)+δ δ(r) j i i j j i j j i i j i = α α(r)YY +α δ(r)Y +δ α(r)Y +δ δ(r) j i i j j i j j i i j i and(bysymmetry) YY ⋆r = Y ⋆(α (r)Y +δ(r)) i j i j j i = αα (r)YY +δα (r)Y +αδ (r)Y +δδ (r). i j i j i j j i j i i j ⊓⊔ ThustheR-modulestructureofamultivariateOreextensioncanbeidentifiedwith thatofthepolynomialringR[Y ,...,Y ]overitsnaturalR-basis 1 n T :={Y1a1···Ynan :(a1,...,an)∈Nn}, R(cid:27)R[T]=SpanR{T}. Wecanthereforedenoteα :=α,δ :=δ foreachiand,iteratively, Yi i Yi i α :=α α,δ :=δ δ, foreachτ . τYi τ i τYi τ i ∈T RemarkthatamultivariateOreextensionisnotanalgebra;infact,ifwedefine,for τ=Yd1 Ydn andt=Ye1 Yen suchthatτ t 1 ··· n 1 ··· n | t e e := 1 n , τ! d1!··· dn! wehave t t⋆r= δ α (r)τ, foreacht andr R. t τ τ! τ ∈T ∈ Xτ τ∈Tt | Wecandefine,foreacht ,amap ∈T t θt :R→R, θt(r)= τ!δτtατ(r)τ, Xτ τt∈,τT,t | sothatt⋆r=α(r)t+θ(r)foreacht andeachr R. t t ∈T ∈ Such mapsα andθ satisfy propertiesanalogousofthose ofOre’sconjugateand t t derivative: Lemma7. Withthepresentnotation,foreacht ,wehave ∈T 1. foreachr R,α(r)=0 = r =0, t ∈ ⇒ 2. α isaringendomorphism; t 6 3. thefollowingconditionsareequivalent: (a) foreachd R 0 existsc R 0 :Y⋆c=dY+θ(c),α(c)=d; t t ∈ \{ } ∈ \{ } (b) α isaringautomorphism; t 4. θ isanα-derivationofR; t t 5. ifRisaskewfield,theneachr R 0 satisfies ∈ \{ } α(r 1)=(α(r)) 1, θ(r 1)= (α(r)) 1θ(r)r 1; t − t − t − t − t − − 6. Im(α) Risasubring,whichisanisomorphismcopyofR. t ⊂ Wefurtherhave 7. ifeachα isanautomorphism,alsoeachα,t ,issuch. i t ∈T ⊓⊔ 1.3 AssociatedgradedOreExtension Definition8. AmultivariateOreextension R[Y ;α ,δ ][Y ;α ,δ ] [Y ;α ,δ ] 1 1 1 2 2 2 n n n ··· where each δ is zero, will be called a graded Ore extension (or: Ore extension with i zeroderivations[40,41])andwillbedenoted R:=R[Y ;α ][Y ;α ] [Y ;α ]. 1 1 2 2 n n ··· ⊓⊔ Lemma9. InamultivariategradedOreextension, – sinceitisanOrealgebra,theαscommute, – andt⋆r=α(r)t =:M(t⋆r) foreacht andr R. t ∈T ∈ h i Remark 10. Notethat, sincemultivariateOreextensionscoincide,asleftR-modules, withtheclassicalpolynomialringsR[Y ,...,Y ]andsohavethesameR-basis,namely 1 n ,theycansharewiththepolynomialringstheirstandard -valuation[50,29,2,32] T T [30, 24.4,24.6].Thisjustifiesthedefinitionbelow. § Definition11. GivenanOreextensionR:=R[Y ;α ,δ ][Y ;α ,δ ] [Y ;α ,δ ]the 1 1 1 2 2 2 n n n ··· correspondinggradedOreextensionG(R) := R[Y ;α ][Y ;α ] [Y ;α ]iscalledits 1 1 2 2 n n ··· associatedgradedOreextension. ⊓⊔ Example12. 1. ThefirstnonobviousexampleofOreextensionwasproposedin1948byD.Ta- mari[51]inconnectionwiththenotionof“orderofirregularity”introducedby Orein[37];itconsistsofthegradedOreextension. R:=R[Y;α], R=Q[x]whereα:R R: x x2. → 7→ 7 2. Such constructionwas generalizedbyWeispfenning[52] whichintroducedthe rings R:=R[Y;α], R=Q[x]whereα:R R: x xe, e N i → 7→ ∈ 3. andextendedbyPesch[40]tohisiteratedOreextensionswithpowersubstitution R:=R[Y ;α ][Y ;α ] [Y ;α ], R=Q[x] 1 1 2 2 n n ··· whereαi :R R: x xei, ei N. → 7→ ∈ 4. AnOreextensionwhereαisinvertibleisdiscussedin[27]: R:=R[S;α],R=Q[D ,D ,D ] 1 2 3 where α:R R: f(D ,D ,D ) f(D +2D ,D , D ) 1 2 3 2 1 3 1 → 7→ − whoseinverseis α 1 :R R: f(D ,D ,D ) f( D ,D +2D ,D ). − 1 2 3 3 1 3 2 → 7→ − ⊓⊔ Notethat,whileasR-modulesRandG(R)coincidebothwiththepolynomialring =R[Y ,...,Y ],thethreeringshave,ingeneral,differentarithmetics;wewilldenote 1 n P ⋆themultiplicationofRand thoseofG(R). ∗ Example13. TheringofExample12,1. R:=R[Y;α], R=Q[x]whereα:R R: x x2 → 7→ isanOreextensionwhichisgraded. Themap 2i 1 − δ:Q[x] Q[x]: xi xh → 7→ Xh=i isanα-derivationsince 2i+2j 1 − δ(xi xj) = xh · hX=i+j 2i+2j 1 2i+j 1 − − = xh+ xh h=X2i+j hX=i+j 2j 1 2i 1 − − = x2i xh+xj xh Xh=j Xh=i = α(xi)δ(xj)+δ(xi)xj; thusS:=R[Y;α,δ]isanOreextensionofwhichRistheassociatedgradedOreexten- sion. ⊓⊔ 8 Example14. SinceinBuchberger-ZachariasTheory,fromanalgorithmicpointofview, theinterestpointsareassociatedgradedringsandthustheroˆleofderivatesisirrelevant, weillustratetheresultsfortheOreextensionswiththezero-derivatives R:=R[Y ;α ][Y ;α ] [Y ;α ],R=Z[x], 1 1 2 2 n n ··· withαi(x):=cixei,ci Z 0 ,ei N 0 . ∈ \{ } ∈ \{ } Ifwedenoteγthemap γ:N N 0 N,(a,e) a−1ei = 1−ea × \{ }→ 7→ 1 e Xi=0 − wherethelastequalityholdsfore,1,wehaveYia∗xb =cibγ(a,ei)xeaibYia. Notethat b 1 a 1 a+b 1 γ(b,e)+ebγ(a,e)= − ei+ − eb+i = − ei =γ(a+b,e). (1-a) Xi=0 Xi=0 Xi=0 Sinceαj(αi(x)) = ciαj(xei) = cicejixeiej andαi(αj(x)) = cjαi(xej) = cjceijxeiej, then RisagradedOreextensionifandonlyif cicejixeiej =αj(αi(x))=αi(αj(x))=cjαi(xej)=cjceijxeiej idest ceji−1 =ciej−1. (1-b) Wethushave n relationsamongthencoefficientsc. Inparticularweneedtopartition 2 i theindicesas(cid:16) (cid:17) 1,...,n = E O S,E = i:2 e ,O= i:2∤e >1 ,S = i:e =1 . i i i { } ⊔ ⊔ { | } { } { } If I := O E = theneachsuchequationsarethetrivialequality1 = 1andthus ⊔ ∅ allc arefree.ThesituationiscompletelydifferentwhenI :=O E , ;infact, i ⊔ ∅ – fori S necessarilyc = 1; i ∈ ± – ifaprime pdividesatleastac , j I,thenitdivideseachc,i I. j i ∈ ∈ Asregardsthesignofc wecansaythat i – ifE , then ∅ – c ispositiveforeachi S O, i ∈ ∪ – the sign of c,i E, is undeterminedbut all the c,i E, have the same i i ∈ ∈ sign. – ifE = thenthesignofc,i S Oisundetermined. i ∅ ∈ ∪ Forinstance 9 – fore =e =1,e =5,e =3wehaveS = 1,4 ,O= 2,3 ,E = and 1 4 2 3 { } { } ∅ c4 =c0,c2 =c0,c0 =c0,c2 =c4,c0 =c4,c0 =c2; 1 2 1 3 1 4 2 3 2 4 3 4 whencec = 1,c = 1,c = c2; 1 ± 4 ± 2 ± 3 – fore =e =1,e =2,e =3wehaveS = 1,4 ,O= 3 ,E = 2 ,and 1 4 2 3 { } { } { } c =c0,c2 =c0,c0 =c0,c2 =c ,c0 =c ,c0 =c2; 1 2 1 3 1 4 2 3 2 4 3 4 whencec =c =1,c =c2 >0; 1 4 3 2 – fore = 1, e = 2,e = 3,S = 1 E = 2 , O = 3 . Supposec = 6,soboth 1 2 3 2 { } { } { } theprimes2and3dividec . Fromc = c0,c2 = c0,c2 = c wegetc = 1and 2 1 2 1 3 2 3 1 c =36. Wenoticethat2 c and3 c ,butneither2nor3dividec ; 3 3 3 1 | | – fore =e =1,e =4,e =8wehaveS = 1,4 ,E = 2,3 ,O= and 1 4 2 3 { } { } ∅ c3 =c0,c7 =c0,c0 =c0,c7 =c3,c0 =c3,c0 =c7. 1 2 1 3 1 4 2 3 2 4 3 4 whencec =c =1,c =χ3,c =χ7,c c >0. 1 4 2 3 2 3 Asregardsthevalues c ,1 i n,setting i | | ≤ ≤ n n ρ:= (e 1)= (e 1),χ:= ρ c , j− j− vt | j| Xj=1 Xj I Yj=1 ∈ wehave cj =χej−1foreach j 1,....,n . (1-c) | | ∈{ } Infact,sinceifaprimepdividesatleastac , j I,thenitdivideseachc,i I,we j i canexpresseach c ,i I,as c = pai,1 pai,h whe∈re p , ,p aretheprime∈factors | i| ∈ | i| 1 ··· h 1 ··· h ofthesquarefreeassociate √χ= p1 phofχ. ··· Wehave ciej−1 = cjei−1 = pai(ej−1) = paj(ei−1) = ai(ej 1)=aj(ei 1) | | | | ⇒ ⇒ − − whencea =a e =e anda >a e <e. i j i j i j j i ⇐⇒ ⇐⇒ Thusthecswithminimale minimalizealsoalla ,1 l h. i i i,l ≤ ≤ WTheemreoforereovernj=h1a|vcej|a=j,l =j∈aIi(,ie|(cie−jj−1|)1=),1≤hl=1lp≤lajh,l.= hl=1plai,lPnej=i−11(ej−1) = hl=1pleaii−,lρ1 whence Q Q Q Q Q n h ai,l h aj,l χ:= vtρ |cj|= plei−1 = plej−1 Yj=1 Yl=1 Yl=1 and(1-c). Theformula(1-c)allowstoreformulate(1-b)as cjei−1 = ciej−1 =χ(ei−1)(ej−1). (1-d) | | | | 10