ebook img

Buchberger-Zacharias Theory of Multivariate Ore Extensions PDF

0.43 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Buchberger-Zacharias Theory of Multivariate Ore Extensions

Buchberger-Zacharias Theory of Multivariate Ore 7 Extensions 1 0 2 MichelaCeria TeoMora n DipartimentodiMatematica DIMA a J Universita`diTrento Universita`diGenova 8 [email protected] [email protected] ] January 10,2017 A R . h Abstract t a WepresentBuchbergerTheoryandAlgorithmofGro¨bnerbasesformultivari- m ate Oreextensions of ringspresented as modules over a principal ideal domain. [ ThealgorithmsarebasedonMo¨llerLiftingTheorem. 1 Inher1978Bachelor’sthesis[53]ZachariasdiscussedhowtoextendBuchberger v Theory[7,8,10]fromthecaseofpolynomialringsoverafieldtothatofpolynomials 9 overaNoetherianringwithsuitableeffectivenessconditions. 9 Inthemeantimeasimilartaskwasperformedinaseriesofpapers—Kandri-Rody– 8 Kapur[20]mergedtherewritingrulesbehindEuclideanAlgorithmwithBuchberger’s 1 0 rewriting, proposing a Buchberger Theory for polynomial rings over Euclidean do- . mains;Pan[39]studiedBuchbergerTheoryforpolynomialringsoverdomainsintro- 1 ducingthenotionsofstrong/weakGro¨bnerbases—whichculminatedwith[34]. 0 7 Such unsorpassed paper, reformulating and improving Zacharias’ intuition, gave 1 efficientsolutionstocomputebothweakandstrongGro¨bnerbasesforpolynomialrings : overeachZachariasring,withparticolarattentiontothePIRcase.Itsmaincontribution v i isthereformulationofBuchbergertest/completion(“abasis F isGro¨bnerifandonly X if eachS-polynomialbetweentwo elementsof F, reducesto 0”)in the moreflexible r liftingtheorem(“abasisF isGro¨bnerifandonlyifeachelementinaminimalbasisof a thesyzygiesamongtheleadingmonomialslifts,viaBuchbergerreduction,toasyzygy amongtheelementsofF”). Theonlyfurthercontributiontothisultimatepaperisthe survey [6] of Mo¨ller’s results which reformulated them in terms of Szekeres Theory [50]. The suggestion of extendingBuchbergerTheory to non-commuativerings which satisfy Poincare´-Birkhoff-WittTheoremwas putforwardby Bergman[5], effectively appliedbyApel–Lassner[3,4]toLiealgebrasandfurtherextendedtosolvablepoly- nomialrings[21,22],skewpolynomialrings[15,16,17]andtootheralgebras[1,11, 25,26]whichsatisfyPoincare´-Birkhoff-WittTheoremandthus,underthestandardin- tepretationofBuchbergerTheoryintermsoffilration/graduations[2,29,32,49,28], havetheclassicalpolynomialringasassociatedgradedrings. 1 In particularWeispfenning [52] adapted his results to a generalizationof the Ore extension [38] proposed by Tamari [51] and its construction was generalized by his studentPesch[40,41]thusintroducingthenotionofiterativeOreextensionwithcom- mutingvariables R:=R[Y ;α ,δ ][Y ;α ,δ ] [Y ;α ,δ ], Radomain; 1 1 1 2 2 2 n n n ··· the concepthas been called Ore algebra in [12] and is renamed here as multivariate Oreextension(foradifferentandpromisingapproachtoOrealgebrassee[23]). Bergman’sapproachandmostofallextensionsareformulatedforringswhichare vector spaces over a field; in our knowledge the only instances in which the coeffi- cientring R is presentedas a D-moduleovera domainD (or at least as a Z-module) are Pritchard’s [42, 43] extension of Mo¨ller Lifting Theory to non-commutativefree algebrasandReinert’s[44,45]deepstudyofBuchbergerTheoryonFunctionRings. Following the recent survey on Buchberger-Zacharias Theory for monoid rings R[S]overaunitaryeffectiveringRandaneffectivemonoidS[31],weproposeherea Mo¨ller–PritchardliftingtheorempresentationofBuchberger-ZachariasTheoryandre- latedGro¨bnerbasiscomputationalgorithmsformultivariateOreextensions.Thetwist w.r.t. [31] is thatthereR[S]coincideswith itsassociated gradedring; hereR and its associatedgradedring G(R):=R[Y ;α ][Y ;α ] [Y ;α ] 1 1 2 2 n n ··· coincideassetsandasleftR-modulesbetweenthemselvesandwiththecommutative polynomialringR[Y , ,Y ],butasringshavedifferentmultiplications. 1 n ··· WebeginbyrecallingOre’soriginaltheory[38]ofnon-commutativepolynomials R[Y],relaxingtheoriginalassumptionthatRisafieldtothecaseinwhichRisadomain (Section 1.1) and Pesch’s constructions of multivariate Ore extensions (Section 1.2) and graded multivariate Ore extensions (Section 1.3), focusing on the arithmetics of themainExample14 R:=R[Y1;α1][Y2;α2] [Yn;αn],R:=Z[x] αi(x):=cixei,ci Z 0 ,ei N 0 . ··· ∈ \{ } ∈ \{ } NextweintroduceBuchbergerTheoryinmultivariateOreextensionsrecallingthe notionofterm-orderings(Section2.1),definitionandmainpropertiesofleft,right,bi- lateralandrestrictedGro¨bnerbases(Section2.2)andBuchbergerAlgorithmforcom- putingcanonicalformsinthecaseinwhichRisafield(Section2.3). WeadapttooursettingSzekeresTheory[50](Section3),Zachariascanonicalrep- resentationwithrelatedalgorithm(Section4)andMo¨llerLiftingTheorem(Section5). ThenextSectionsarethealgorithmiccoreofthepaper: wereformulateformulti- variateOreextensionsoveraZachariasring – Mo¨ller’s algorithm for computing the required Gebauer–Mo¨ller set (id est the minimalbasisofthemoduleofthesyzygiesamongtheleadingmonomials)for Buchbergertest/completionofleftweakbases(Section6.1); – hisreformulationofitwhichrequiresonlyl.c.m. computationinRforthecase inwhichRisaPIR(Section6.2); 2 – stillinthecaseinwhichRisaPIR,Mo¨ller’scompletionofaleftweakbasisto aleftstrongone(Section6.3); – Gebauer–Mo¨llercriteria[18]forproducingaGebauer–Mo¨llerset(Section6.4); – Kandri-Rody–Weispfenningcompletion[21]ofaleftweakbasesforproducing abilateralone(Section7.1); – Weispfenning’s[52]restrictedcompletion(Section7.2); – asatechnicaltoolrequiredbyWeispfenning’srestrictedcompletion,howtopro- ducerightGebauer–Mo¨llersets(Section7.3). Finally we reverseto a theoreticalsurveysummarizingthe structuraltheoremfor the case in which R is a Zacharias ring over a PID (Section 8), specializing to our setting Spear’s Theorem [48, 28] (Section 9) and extending to it Lazard’s Structural Theorem[24](Section10). In an appendixwe discuss, as far as it is possible, how to extend this theory and algorithmstothecaseinwhichRisaPIR(SectionA). 1 Recalls on Ore Theory 1.1 OreExtensions LetRbeanotnecessarilycommutativedomain;Ore[38]investigatedunderwhichcon- ditionstheR-moduleR:=R[Y]ofalltheformalpolynomialsismadearingunderthe assumptionthatthemultiplicationofpolynomialsshallbeassociativeandboth-sided distributive and the limitation imposed by the postulate that the degree of a product shallbeequaltothesumofthedegreeofthefactors. Itis clear that, due to the distributiveproperty,itsufficesto define the productof twomonomialsbYr aYs orevenmorespecifically,todefinetheproductY r,r R; · · ∈ thisnecessarilyrequirestheexistenceofmapsα,δ:R Rsuchthat → Y r=α(r)Y+δ(r)foreachr R; · ∈ Orecallsα(r)theconjugateandδ(r)thederivativeofr. Undertherequiredpostulateclearlywehave 1. foreachr R,α(r)=0 = r =0, ∈ ⇒ sothatαisinjective. Itismoreoversufficienttoconsider,foreachr,r R,therelations ′ ∈ α(r+r )Y+δ(r+r )=Y (r+r )=Y r+Y r = α(r)+α(r ) Y+δ(r)+δ(r ), ′ ′ ′ ′ ′ ′ · · · (cid:0) (cid:1) α(rr )Y+δ(rr )=Y (rr )=(Y r) r =α(r)α(r )Y+α(r)δ(r )+δ(r)r , ′ ′ ′ ′ ′ ′ ′ · · · and,ifRisaskewfield,andr,0, Y =(Y r) r 1 =α(r)α(r 1)Y+α(r)δ(r 1)+δ(r)r 1, − − − − · · todeducethat 3 2. αisaringendomorphism; 3. thefollowingconditionsareequivalent: (a) foreachd R 0 existsc R 0 :Y c=dY+δ(c),α(c)=d; ∈ \{ } ∈ \{ } · (b) αisaringautomorphism; 4. δisanα-derivationofRidestanadditivemapsatisfying δ(rr )=α(r)δ(r)+δ(r)r foreachr,r R; ′ ′ ′ ′ ∈ 5. ifRisaskewfield,theneachr R 0 satisfies ∈ \{ } α(r 1)=(α(r)) 1, δ(r 1)= (α(r)) 1δ(r)r 1; − − − − − − 6. Im(α) Risasubring,whichisanisomorphismcopyofR; ⊂ 7. R := r R:r=α(r) Risaring,theinvariantringofR; 1 { ∈ }⊂ 8. R := r R:δ(r)=0 Risaring,theconstantringofR; 0 { ∈ }⊂ 9. r R:Y r =rY =R R . 0 1 { ∈ · } ∩ 10. IfRisaskewfield,sucharealsoIm(α),R andR . 1 0 11. DenotingZ := z R:zr =rzforeachr R thecenterofR,wehave { ∈ ∈ } r R: f r=rf foreach f R =R R Z. 0 1 { ∈ · ∈ } ∩ ∩ Moreover,ifweconsidertwopolynomials f(Y),g(Y) R 0 , ∈ \{ } f =aYm+f ,g=bYn+g ,a,b R 0 ,m,n N, f ,g R,deg(f )<m,deg(g )<n, 0 0 0 0 0 0 ∈ \{ } ∈ ∈ wehave f g=aαm(b)Ym+n+h(Y),deg(h)<m+n; · sinceαisanendomorphism,b , 0 = α(b) , 0 = αm(b) , 0andsinceRisa ⇒ ⇒ domainitholdsαm(b),0,a = aαm(b),0 = f g,0. Asaconsequence ⇒ ⇒ · 12. Risadomain. Definition1. RwiththeringstructuredescribedaboveiscalledanOreextensionand isdenotedR[Y;α,δ]. Remark2(Ore). InanOreextensionR[Y;α,δ],denoting = α,δ thefreesemigroup S h i overthealphabet α,δ and,foreachd Nandi N,0 i d, thesetofthe d { } ∈ ∈ ≤ ≤ Sd,i i wordsin of lengthd in which occuriinstancesof αand d i instancesofδ in(cid:16)an(cid:17) S − arbitraryorder,wehave d Yd r= τ(r)Yi · Xi=0 τX∈Sd,i 4 foreachd N;forinstance ∈ Y3 r = α3(r)Y3+δ3(r) · + α2δ(r)+αδα(r)+δα2(r) Y2 (cid:16) (cid:17) + αδ2(r)+δαδ(r)+δ2α(r) Y. (cid:16) (cid:17) Inparticular,for f(Y)= n aYn iandg(Y)= m bYm i inRwehave i=0 i − i=0 i − P P n+m i i a g(Y)f(Y)= cYn+m i withc =b αm(a )andc = b − τ(a ). i − 0 0 0 i a b Xi=0 Xa=0 Xb=0τ∈SXm−a,i−a−b Remark3(Ore). Undertheassumptionthat(cf. 3.) αisanautomorphism,eachpoly- nomial n aYi Rcanbeuniquelyrepresentedas n Yia¯ forpropervaluesa¯ R. i=1 i ∈ i=1 i i ∈ In factwe haveax = xα 1(a) δ(α 1(a))fromwhichwe candeduceinductively P − − P − properexpressions n axn = xnα n(a)+ ( 1)ixn iσ (a). − − in − Xi=1 ⊓⊔ 1.2 MultivariateOreExtensions Definition4. AniterativeOreextensionisaring(whosemultiplicationwedenote⋆) definedas R:=R[Y ;α ,δ ][Y ;α ,δ ] [Y ;α ,δ ] 1 1 1 2 2 2 n n n ··· where, for eachi > 1, α is an endomorphismandδ an α-derivationof the iterative i i i Oreextension R :=R[Y ;α ,δ ] [Y ;α ,δ ]. i 1 1 1 1 i 1 i 1 i 1 − ··· − − − AmultivariateOreextension(or:Orealgebra[12];or:iterativeOreextensionwith commutingvariables[40,41])isaniterativeOreextensionwhichsatisfies – α δ =δα ,foreachi, j,i, j, j i i j – αα =α α,δδ =δ δ for j>i, i j j i i j j i – α (Y)=Y,δ (Y)=0for j>i. j i i j i ⊓⊔ Lemma5(Pesch). InaniterativeOreextension,foreachi< jitholds Y ⋆Y =YY α (Y)=Y,δ (Y)=0. j i i j j i i j i ⇐⇒ Proof. Foreachi< j,wehaveY ⋆Y =α (Y)Y +δ (Y). j i j i j j i ⊓⊔ Lemma6(Pesch). AniterativeOreextensionisamultivariateOreextensioniffY ⋆ j Y =YY foreachi< j. i i j 5 Proof. Infact,usingLemma5foreachr R,wehave ∈ Y ⋆Y ⋆r = Y ⋆(α(r)Y +δ(r)) j i j i i i = α (α(r)Y +δ(r))Y +δ (α(r)Y +δ(r)) j i i i j j i i i = α α(r)YY +α δ(r)Y +δ (α(r)Y)+δ δ(r) j i i j j i j j i i j i = α α(r)YY +α δ(r)Y +δ α(r)Y +δ δ(r) j i i j j i j j i i j i and(bysymmetry) YY ⋆r = Y ⋆(α (r)Y +δ(r)) i j i j j i = αα (r)YY +δα (r)Y +αδ (r)Y +δδ (r). i j i j i j j i j i i j ⊓⊔ ThustheR-modulestructureofamultivariateOreextensioncanbeidentifiedwith thatofthepolynomialringR[Y ,...,Y ]overitsnaturalR-basis 1 n T :={Y1a1···Ynan :(a1,...,an)∈Nn}, R(cid:27)R[T]=SpanR{T}. Wecanthereforedenoteα :=α,δ :=δ foreachiand,iteratively, Yi i Yi i α :=α α,δ :=δ δ, foreachτ . τYi τ i τYi τ i ∈T RemarkthatamultivariateOreextensionisnotanalgebra;infact,ifwedefine,for τ=Yd1 Ydn andt=Ye1 Yen suchthatτ t 1 ··· n 1 ··· n | t e e := 1 n , τ! d1!··· dn! wehave t t⋆r= δ α (r)τ, foreacht andr R. t τ τ! τ ∈T ∈ Xτ τ∈Tt | Wecandefine,foreacht ,amap ∈T t θt :R→R, θt(r)= τ!δτtατ(r)τ, Xτ τt∈,τT,t | sothatt⋆r=α(r)t+θ(r)foreacht andeachr R. t t ∈T ∈ Such mapsα andθ satisfy propertiesanalogousofthose ofOre’sconjugateand t t derivative: Lemma7. Withthepresentnotation,foreacht ,wehave ∈T 1. foreachr R,α(r)=0 = r =0, t ∈ ⇒ 2. α isaringendomorphism; t 6 3. thefollowingconditionsareequivalent: (a) foreachd R 0 existsc R 0 :Y⋆c=dY+θ(c),α(c)=d; t t ∈ \{ } ∈ \{ } (b) α isaringautomorphism; t 4. θ isanα-derivationofR; t t 5. ifRisaskewfield,theneachr R 0 satisfies ∈ \{ } α(r 1)=(α(r)) 1, θ(r 1)= (α(r)) 1θ(r)r 1; t − t − t − t − t − − 6. Im(α) Risasubring,whichisanisomorphismcopyofR. t ⊂ Wefurtherhave 7. ifeachα isanautomorphism,alsoeachα,t ,issuch. i t ∈T ⊓⊔ 1.3 AssociatedgradedOreExtension Definition8. AmultivariateOreextension R[Y ;α ,δ ][Y ;α ,δ ] [Y ;α ,δ ] 1 1 1 2 2 2 n n n ··· where each δ is zero, will be called a graded Ore extension (or: Ore extension with i zeroderivations[40,41])andwillbedenoted R:=R[Y ;α ][Y ;α ] [Y ;α ]. 1 1 2 2 n n ··· ⊓⊔ Lemma9. InamultivariategradedOreextension, – sinceitisanOrealgebra,theαscommute, – andt⋆r=α(r)t =:M(t⋆r) foreacht andr R. t ∈T ∈ h i Remark 10. Notethat, sincemultivariateOreextensionscoincide,asleftR-modules, withtheclassicalpolynomialringsR[Y ,...,Y ]andsohavethesameR-basis,namely 1 n ,theycansharewiththepolynomialringstheirstandard -valuation[50,29,2,32] T T [30, 24.4,24.6].Thisjustifiesthedefinitionbelow. § Definition11. GivenanOreextensionR:=R[Y ;α ,δ ][Y ;α ,δ ] [Y ;α ,δ ]the 1 1 1 2 2 2 n n n ··· correspondinggradedOreextensionG(R) := R[Y ;α ][Y ;α ] [Y ;α ]iscalledits 1 1 2 2 n n ··· associatedgradedOreextension. ⊓⊔ Example12. 1. ThefirstnonobviousexampleofOreextensionwasproposedin1948byD.Ta- mari[51]inconnectionwiththenotionof“orderofirregularity”introducedby Orein[37];itconsistsofthegradedOreextension. R:=R[Y;α], R=Q[x]whereα:R R: x x2. → 7→ 7 2. Such constructionwas generalizedbyWeispfenning[52] whichintroducedthe rings R:=R[Y;α], R=Q[x]whereα:R R: x xe, e N i → 7→ ∈ 3. andextendedbyPesch[40]tohisiteratedOreextensionswithpowersubstitution R:=R[Y ;α ][Y ;α ] [Y ;α ], R=Q[x] 1 1 2 2 n n ··· whereαi :R R: x xei, ei N. → 7→ ∈ 4. AnOreextensionwhereαisinvertibleisdiscussedin[27]: R:=R[S;α],R=Q[D ,D ,D ] 1 2 3 where α:R R: f(D ,D ,D ) f(D +2D ,D , D ) 1 2 3 2 1 3 1 → 7→ − whoseinverseis α 1 :R R: f(D ,D ,D ) f( D ,D +2D ,D ). − 1 2 3 3 1 3 2 → 7→ − ⊓⊔ Notethat,whileasR-modulesRandG(R)coincidebothwiththepolynomialring =R[Y ,...,Y ],thethreeringshave,ingeneral,differentarithmetics;wewilldenote 1 n P ⋆themultiplicationofRand thoseofG(R). ∗ Example13. TheringofExample12,1. R:=R[Y;α], R=Q[x]whereα:R R: x x2 → 7→ isanOreextensionwhichisgraded. Themap 2i 1 − δ:Q[x] Q[x]: xi xh → 7→ Xh=i isanα-derivationsince 2i+2j 1 − δ(xi xj) = xh · hX=i+j 2i+2j 1 2i+j 1 − − = xh+ xh h=X2i+j hX=i+j 2j 1 2i 1 − − = x2i xh+xj xh Xh=j Xh=i = α(xi)δ(xj)+δ(xi)xj; thusS:=R[Y;α,δ]isanOreextensionofwhichRistheassociatedgradedOreexten- sion. ⊓⊔ 8 Example14. SinceinBuchberger-ZachariasTheory,fromanalgorithmicpointofview, theinterestpointsareassociatedgradedringsandthustheroˆleofderivatesisirrelevant, weillustratetheresultsfortheOreextensionswiththezero-derivatives R:=R[Y ;α ][Y ;α ] [Y ;α ],R=Z[x], 1 1 2 2 n n ··· withαi(x):=cixei,ci Z 0 ,ei N 0 . ∈ \{ } ∈ \{ } Ifwedenoteγthemap γ:N N 0 N,(a,e) a−1ei = 1−ea × \{ }→ 7→ 1 e Xi=0 − wherethelastequalityholdsfore,1,wehaveYia∗xb =cibγ(a,ei)xeaibYia. Notethat b 1 a 1 a+b 1 γ(b,e)+ebγ(a,e)= − ei+ − eb+i = − ei =γ(a+b,e). (1-a) Xi=0 Xi=0 Xi=0 Sinceαj(αi(x)) = ciαj(xei) = cicejixeiej andαi(αj(x)) = cjαi(xej) = cjceijxeiej, then RisagradedOreextensionifandonlyif cicejixeiej =αj(αi(x))=αi(αj(x))=cjαi(xej)=cjceijxeiej idest ceji−1 =ciej−1. (1-b) Wethushave n relationsamongthencoefficientsc. Inparticularweneedtopartition 2 i theindicesas(cid:16) (cid:17) 1,...,n = E O S,E = i:2 e ,O= i:2∤e >1 ,S = i:e =1 . i i i { } ⊔ ⊔ { | } { } { } If I := O E = theneachsuchequationsarethetrivialequality1 = 1andthus ⊔ ∅ allc arefree.ThesituationiscompletelydifferentwhenI :=O E , ;infact, i ⊔ ∅ – fori S necessarilyc = 1; i ∈ ± – ifaprime pdividesatleastac , j I,thenitdivideseachc,i I. j i ∈ ∈ Asregardsthesignofc wecansaythat i – ifE , then ∅ – c ispositiveforeachi S O, i ∈ ∪ – the sign of c,i E, is undeterminedbut all the c,i E, have the same i i ∈ ∈ sign. – ifE = thenthesignofc,i S Oisundetermined. i ∅ ∈ ∪ Forinstance 9 – fore =e =1,e =5,e =3wehaveS = 1,4 ,O= 2,3 ,E = and 1 4 2 3 { } { } ∅ c4 =c0,c2 =c0,c0 =c0,c2 =c4,c0 =c4,c0 =c2; 1 2 1 3 1 4 2 3 2 4 3 4 whencec = 1,c = 1,c = c2; 1 ± 4 ± 2 ± 3 – fore =e =1,e =2,e =3wehaveS = 1,4 ,O= 3 ,E = 2 ,and 1 4 2 3 { } { } { } c =c0,c2 =c0,c0 =c0,c2 =c ,c0 =c ,c0 =c2; 1 2 1 3 1 4 2 3 2 4 3 4 whencec =c =1,c =c2 >0; 1 4 3 2 – fore = 1, e = 2,e = 3,S = 1 E = 2 , O = 3 . Supposec = 6,soboth 1 2 3 2 { } { } { } theprimes2and3dividec . Fromc = c0,c2 = c0,c2 = c wegetc = 1and 2 1 2 1 3 2 3 1 c =36. Wenoticethat2 c and3 c ,butneither2nor3dividec ; 3 3 3 1 | | – fore =e =1,e =4,e =8wehaveS = 1,4 ,E = 2,3 ,O= and 1 4 2 3 { } { } ∅ c3 =c0,c7 =c0,c0 =c0,c7 =c3,c0 =c3,c0 =c7. 1 2 1 3 1 4 2 3 2 4 3 4 whencec =c =1,c =χ3,c =χ7,c c >0. 1 4 2 3 2 3 Asregardsthevalues c ,1 i n,setting i | | ≤ ≤ n n ρ:= (e 1)= (e 1),χ:= ρ c , j− j− vt | j| Xj=1 Xj I Yj=1 ∈ wehave cj =χej−1foreach j 1,....,n . (1-c) | | ∈{ } Infact,sinceifaprimepdividesatleastac , j I,thenitdivideseachc,i I,we j i canexpresseach c ,i I,as c = pai,1 pai,h whe∈re p , ,p aretheprime∈factors | i| ∈ | i| 1 ··· h 1 ··· h ofthesquarefreeassociate √χ= p1 phofχ. ··· Wehave ciej−1 = cjei−1 = pai(ej−1) = paj(ei−1) = ai(ej 1)=aj(ei 1) | | | | ⇒ ⇒ − − whencea =a e =e anda >a e <e. i j i j i j j i ⇐⇒ ⇐⇒ Thusthecswithminimale minimalizealsoalla ,1 l h. i i i,l ≤ ≤ WTheemreoforereovernj=h1a|vcej|a=j,l =j∈aIi(,ie|(cie−jj−1|)1=),1≤hl=1lp≤lajh,l.= hl=1plai,lPnej=i−11(ej−1) = hl=1pleaii−,lρ1 whence Q Q Q Q Q n h ai,l h aj,l χ:= vtρ |cj|= plei−1 = plej−1 Yj=1 Yl=1 Yl=1 and(1-c). Theformula(1-c)allowstoreformulate(1-b)as cjei−1 = ciej−1 =χ(ei−1)(ej−1). (1-d) | | | | 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.