ebook img

Bubble effect on Kelvin-Helmholtz' instability PDF

0.27 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bubble effect on Kelvin-Helmholtz' instability

Bubble effect on Kelvin-Helmholtz’ instability 8 0 0 S. L. Gavrilyuk∗, H. Gouin∗ and V.M.Teshukov† 2 n February 2, 2008 a J 6 1 Abstract ] n We derive boundary conditions at interfaces (contact discontinuities) y for a class of Lagrangian models describing, in particular, bubbly flows. d Weusetheseconditions tostudyKelvin-Helmholtz’instability which de- - velops in theflow of two superposed layers of a pureincompressible fluid u andafluidcontaininggasbubbles,co-flowingwithdifferentvelocities. We l f show thatthepresenceofbubblesin onelayerstabilizes the flowin some . s intervals of wavelengths. c i s y 1 Introduction h p Many mathematical models of fluid mechanics are derivedthrough the approx- [ imation of the solution of boundary value problems for Euler equations. For 1 example, equations for bubbly flows are derived as an approximation of the v solution of a complex free-boundary problem describing the motion of the mix- 7 ture of water and gas bubbles (Iordanski (1960), Kogarko(1961), Wijngaarden 5 4 (1968)). Green-Naghdi’s model describing wave motions of a liquid layer of fi- 2 nite depth in a shallow water approximation with account of dispersion effects 1. is another example (Green et al (1974), Green & Naghdi (1976)). Due to the 0 fact that averaging procedures and asymptotic expansions have been used in 8 thederivation,itisnotobvioustodecidewhatboundaryconditionsarenatural 0 for these systems of equations. In this paper, a Hamiltonian formulation of the : v problemin(t,x)-spaceisproposedwhichallowsonetofindboundaryconditions i for a general class of models. This class includes a model of bubbly fluid and X dispersiveshallowwater. Weusetheboundaryconditionstostudythestability r a of two co-flowing layers of bubbly and pure fluids. In absence of gravity and capillarity, it is well known that Kelvin-Helmholtz’ instability develops for any wave lengths in the flow of two superposed layers of pure incompressible fluids ∗LaboratoiredeMod´elisationenM´ecaniqueetThermodynamique,Facult´edesScienceset TechniquesdeSaint-J´eroˆme,Case322,AvenueEscadrilleNormandie-Niemen,13397Marseille Cedex20,France,e-mail: [email protected];[email protected] †LavrentyevInstituteofHydrodynamics,Lavrentyevprospect15,Novosibirsk630090,Rus- sia, also INRIA, SMASH, 2004 route de Lucioles, 06902 Sophia Antipolis, France, e-mail: [email protected] 1 (see, for example, Drazin & Reid (1981)). We prove that the presence of bub- bles in one layer can produce a stabilizing effect: the flow becomes stable with respect to perturbations of some wave lengths. 2 Governing equations and conditions on mov- ing interfaces 2.1 Variation of Hamilton’s action Here we calculate the variation of Hamilton’s action for a special class of La- grangians. Usually this procedureisusedonlyfor derivationofgoverningequa- tions. We obtain below not only governing equations but also boundary condi- tions at inner contact surfaces. Let us consider the Lagrangianof the form: ∂J L=L(J, ,z) (2.1) ∂z t where z= zi , (i = 0,1,2,3), t is the time, x is the space variable, x ≡ (cid:18) (cid:19) ρ (cid:0) (cid:1) J= , ρ is the fluid density and u is the velocity field. Let us calculate ρu (cid:18) (cid:19) thevariationofHamilton’sactioninthecasewhenthe4-DmomentumJverifies the equation of continuity: ∂ρ Div J +div(ρu)=0 (2.2) ≡ ∂t Hamilton’s action is defined by a= Ldz (2.3) Ω Z where Ω is a material domain. Considering a smooth one-parameter family of virtual motions z=Φ(Z,ε), Φ(Z,0)=ϕ(Z) (Z stands forthe Lagrangiancoordinates,ε is a smallparameterat the vicinity of zero and z = ϕ(Z) is the real motion), we define the virtual displacements ζ(Z) and the Lagrangianvariations δJ(Z) by the formulae: ∂Φ(Z,ε) ∂J(Z,ε) ζ(Z)= , δJ(Z)= (2.4) ∂ε ∂ε (cid:12)ε=0 (cid:12)ε=0 (cid:12) (cid:12) Due to the fact that Z = ϕ−1(z(cid:12)(cid:12)), we consider the variat(cid:12)(cid:12)ions as functions of Eulerian coordinates and use the same notations ζ(z) and δJ(z) in Eulerian variables. Hamilton’s principle assumes that ζ(z) = 0 on the boundary ∂Ω of Ω. 2 In the following, the transposition is denoted by T. For any vectors a and b we use the notation aTb for their scalar product a b and abT for their tensor · producta b. ThedivergenceofthesecondordertensorAisacovectordefined ⊗ by Div(Ah)=Div(A)h whereh is anyconstantvectorfield. Div anddiv, Grad and arerespectively ∇ divergence and gradient operators in the 4-D and 3-D space. The identity matrix and the zero matrix of dimension n are denoted by I and O . n n In calculations we shall use the equality ∂ζ δJ= (Div ζ) I4 J (2.5) ∂z − (cid:18) (cid:19) which was proved in Gavrilyuk & Gouin (1999). Variation of the Hamilton action is da ∂ζ δa= = δL+L tr dz (2.6) dε(cid:12)ε=0 ZΩ(cid:18) (cid:18)∂z(cid:19)(cid:19) (cid:12) Since (cid:12) (cid:12) ∂L ∂L ∂J ∂L δL= δJ+tr δ + ζ ∂J ∂J ∂z ∂z ∂ (cid:18) (cid:19)  ∂z   (cid:18) (cid:19)    and ∂J ∂δJ ∂J∂ζ δ = ∂z ∂z − ∂z ∂z (cid:18) (cid:19) we get from (2.5) and (2.6): ∂L ∂ζ ∂δJ ∂J∂ζ ∂L δa= (Div ζ)I4 J+tr AT + ζ+L Div ζ dz Ω ∂J ∂z − ∂z − ∂z ∂z ∂z Z (cid:18) (cid:18) (cid:19) (cid:18) (cid:18) (cid:19)(cid:19) (cid:19) with AT = ∂L or AT j = ∂L (2.7) ∂J i ∂Ji ∂ ∂z (cid:0) (cid:1) ∂zj (cid:18) (cid:19) (cid:18) (cid:19) Forthesakeofsimplicitythemeasureofintegrationwillnotbeindicated. Since for any linear transformation A and vector field v ∂v Div(Av)=(Div A)v+tr(A ) ∂z we get ∂L ∂J ∂ζ ∂L ∂δJ ∂L δa= tr J AT + L J Divζ+tr AT + ζ = Ω ∂J − ∂z ∂z − ∂J ∂z ∂z Z (cid:18)(cid:18) (cid:19) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) ∂L ∂J ∂ζ ∂L = tr J AT + L J Div ζ+ Ω ∂J − ∂z ∂z − ∂J Z (cid:18)(cid:18) (cid:19) (cid:19) (cid:18) (cid:19) 3 ∂L +Div ATδJ Div AT δJ+ ζ , − ∂z and finally (cid:0) (cid:1) (cid:0) (cid:1) ∂L ∂J ∂ζ ∂L δa= tr J AT + L J Div ζ+Div ATδJ Ω ∂J − ∂z ∂z − ∂J − Z (cid:18)(cid:18) (cid:19) (cid:19) (cid:18) (cid:19) (cid:0) (cid:1) ∂ζ ∂L Div AT (Div ζ)I4 J+ ζ = − ∂z − ∂z (cid:18) (cid:19) (cid:0) (cid:1) ∂L ∂J ∂ζ = tr J AT JDiv AT + Ω ∂J − ∂z − ∂z Z (cid:18)(cid:18) (cid:19) (cid:19) (cid:0) (cid:1) ∂L ∂L + L J+ DivAT J Div ζ+Div ATδJ + ζ = − ∂J ∂z (cid:18) (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) ∂L ∂J = Div J AT J Div AT ζ+ATδJ Ω ∂J − ∂z − − Z (cid:18)(cid:18) (cid:19) (cid:19) (cid:0) (cid:1) ∂L ∂J Div J AT J Div AT ζ+ − ∂J − ∂z − (cid:18) (cid:19) (cid:0) (cid:1) ∂L ∂L T ∂L +Div L J+ DivAT J ζ Grad L J+ DivAT J ζ+ ζ − ∂J − − ∂J ∂z (cid:18)(cid:18) (cid:19) (cid:19) (cid:18) (cid:19) (cid:0) (cid:1) (cid:0) (cid:1) Let us denote δL ∂L Div AT =KT. δJ ≡ ∂J − Then (cid:0) (cid:1) ∂L ∂J δa= Div J KT AT + L KT J I4 ζ+ (2.8) Ω ∂z − − ∂z − Z (cid:18) (cid:18) (cid:19)(cid:19) (cid:0) (cid:1) ∂J + NT J KT AT + L KT J I4 ζ+NTATδJ Z∂Ω (cid:18) − ∂z − (cid:19) (cid:0) (cid:1) with NT = ( D ,nT), D denotes the surface velocity and n is the space n n − unit normal vector. Virtual displacements vanish at the boundary ∂Ω and the surface integral is zero. The volume integral yields the equations of motion in conservative form as in Gavrilyuk & Gouin (1999). Inthecasewhenfluidtensorialquantitiesarediscontinuousattheinnerinterface Σ, expression (2.8) becomes ∂L ∂J δa= Div J KT AT + L KT J I4 ζ+ (2.9) Ω ∂z − − ∂z − Z (cid:18) (cid:18) (cid:19)(cid:19) (cid:0) (cid:1) ∂J + NT J KT AT + L KT J I4 ζ+NTATδJ Σ − ∂z − Z (cid:20) (cid:18) (cid:19) (cid:21) (cid:0) (cid:1) where the jump through Σ is denoted by [ ]. 4 2.2 Governing equations and boundary conditions We explicit the governing equations and the inner boundary conditions for the Lagrangian L= 1ρ u2 W ρ,ρ· , where (·) = d = ∂() +uT∇() (2.10) 2 | | − dt ∂t (cid:16) (cid:17) Such a Lagrangian appears in the study of wave propagation in both shallow water flows with dispersion and bubbly flows (a complete discussion of these models is given in Gavrilyuk & Teshukov (2001)). We get ∂ρ ∂ρ ∂J ∂t ∂x ∂L u2 ∂W 1∂W 1∂W = , = | | + ( ρ)T u, uT ( ρ)T ∂z ∂j ∂j ∂J − 2 − ∂ρ ρ ∂ρ· ∇ − ρ ∂ρ· ∇ !    ∂t ∂x      Matrix (2.7) becomes ∂W 0T · − ∂ρ ∂L   AT = = . ∂J ∂  ∂W  ∂z  · u O3  (cid:18) (cid:19)  − ∂ρ      We get ∂ ∂W ∂W Div(AT)= div u , 0T , (2.11) · · −∂t ∂ρ !− ∂ρ ! ! 2 u δW 1∂W 1∂W KT= | | + ( ρ)T u, uT ( ρ)T , · · − 2 − δρ ρ ∂ρ ∇ − ρ ∂ρ ∇ ! ∂W NT J=ρ nT u D , NTAT = nT u D ,0T . n · n − − ∂ρ − ! (cid:0) (cid:1) (cid:0) (cid:1) We study the case when Σ is a contact surface and, consequently, NT J = 0, NTAT =0T. We see that the surface integralin (2.9) vanishes if the boundary conditions : L KT J [p]=0 (2.12) − ≡ are fulfilled with p L K(cid:2)T J. Vani(cid:3)shing the volume integral in (2.9) and ≡ − using relations (2.11), we obtain the governing equations in the form ∂ρ +div(ρu)=0, (2.13) ∂t ∂ρu +div ρuuT+pI =0, ∂t (cid:0) (cid:1) 5 ∂W ∂ ∂W ∂W δW p ρ div u W =ρ W. · · ≡ ∂ρ − ∂t ∂ρ !− ∂ρ !!− δρ − A complete set of boundary conditions at the contact interfaces for the class of models considered is: nTu D =0, [p]=0 (2.14) n − Equations (2.13) have been obtained earlier in Gavrilyuk & Shugrin (1996) by meansofthe classicalmethod ofLagrangemultipliers. Notice thatthis method did not give jump conditions (2.12). System (2.13) is reminiscent of Euler equations for compressible fluids. The term p in equations of motion (2.13) andboundaryconditions(2.14)standsforthe pressure. Nevertheless,pisnota functionofdensityasinthecaseofbarotropicfluids: itdependsalsoonmaterial time derivatives of the density. Thus, p is not usual thermodynamic pressure. In general, it implies that the boundary conditions are not just consequences of conservation laws. For example, for Korteweg-type fluids where the stress tensordependsonthedensitygradient,theboundaryconditionscontainnormal derivatives of the density at interfaces (Seppecher (1989), Gouin & Gavrilyuk (1999)). As we have shownhere, the boundary conditions at inner interfaces in bubbly fluids do not depend on normal derivatives of the density: they involve only tangential derivatives. If the flow domain is sharedbetween two domains consisting of pure ideal fluid andbubblyfluid,allpreviouscalculationsarestillvalidandboundaryconditions (2.14) can be extended to such a case. 2.3 Exact statement of the problem Now,weproposetouseconditions(2.14)tostudyKelvin-Helmholtz’instability of a parallel flow between two rigid walls of a layer of bubbly fluid in contact with a layer of pure incompressible fluid. Considerthe 2-Dflowoftwosuperposedfinite layersofinviscidfluids inthe channel: < x < + , 0 < y < H0. The first one is governed by the Euler −∞ ∞ equations : div(u1)=0, ∂u1 + uT1 u1+ ∇p1 =0, <x< , 0<y <h(t,x) ∂t ∇ ρ10 −∞ ∞ (cid:0) (cid:1) (2.15) Hereρ10 isthe constantdensityofpurefluid, u1 =(u1,v1)T isthe velocityfield and p1 is the pressure. In the domain h(t,x)<y <H0 governing equations (2.13) for the second fluid are ∂ρ2 +div(ρ2u2)=0, (2.16) ∂t ∂u2 + uT2 u2+ ∇p2 =0, ∂t ∇ ρ2 (cid:0) (cid:1) ∂W ∂ ∂W ∂W · p2 =ρ2 · div · u2 W, W =W(ρ2,ρ2) ∂ρ2 − ∂t ∂ρ2!− ∂ρ2 !!− 6 Here ρ2, u2 = (u2,v2)T and p2 are the average density, velocity and mixture · pressure, respectively; W = W(ρ2,ρ2) is a given potential. For the flow of compressible bubbles having the same radius, potential W has the form (see, for example, Gavrilyuk (1994) and Gavrilyuk & Teshukov (2001)): · 3 ·2 W(ρ2,ρ2)=ρ2 cgεg(ρg) 2πnρlR R (2.17) − (cid:18) (cid:19) where ε is the internalenergyof the gasin bubbles, R is the bubble radius,ρ g g is the gas density, ρ =const is the density of carrying phase, c =const is the l g bubblemassconcentration,nisthenumberofbubblesperunitmass. Potential W is the difference between the internal energy of gas and the kinetic energy of fluid due to radial bubble oscillations. The bubble radius and the bubble density are functions of the average density ρ2 : −1 4 1 1 1 c 1 1 c 3 g g πR = − , ρ =c − g g 3 n(cid:18)ρ2 − ρl (cid:19) (cid:18)ρ2 − ρl (cid:19) It can be shown that governing equations (2.16) with potential (2.17) coincide exactly with classical equations of bubbly fluids (Kogarko (1961) and van Wi- jngaarden (1968)). In particular, the role of ”equation of state” δW · p2 =ρ2 W, W =W(ρ2,ρ2) (2.18) δρ2 − plays the Rayleigh-Lamb equation which governs the radial oscillations of a spherical bubble: ·· 3 ·2 1 dε 2 g RR+ 2R = ρ (pg−p2), pg =ρgdρ (2.19) l g The equivalence between (2.19) and (2.18) with W given by (2.17) has been proved, for example, in Gavrilyuk (1994). Dissipation-free model (2.16)-(2.17) assumesthattheslidingbetweencomponentsisnegligible. Moreover,thismodel is valid only when the volume fraction of bubbles is very small. Notice that a detailed description of the bubble interaction has been recently done by Russo &Smereka(1996)andHerrero,Lucquin-Desreux&Perthame(1999)inthecase of rigidbubbles, and Smereka (2002),Teshukov& Gavrilyuk (2002)in the case of compressible bubbles, by using a kinetic approach. At the rigid walls y = 0 and y = H0, the vertical components of the velocity are equal to zero v1(t,x,0)=v2(t,x,H0)=0. In accordance with the previous Section, we prescribe the following boundary conditions at the contact interface y =h(t,x): ht+u1hx =v1, ht+u2hx =v2, p1 =p2 (2.20) 7 3 Linear stability problem 3.1 Linearization Consider the following main parallel flow of two fluids: u1 =u10 =const, v1 =0, p1 =p0 =const, 0<y <h0, h0 =const (3.1) u2 =u20 =const, v2 =0, p2 =p0 =const, ρ2 =ρ20 =const, h0 <y <H0 (3.2) ′ Small perturbations denoted by : ′ ′ ′ u1 =u10+u1, v1 =v1, p1 =p0+p1, ′ ′ ′ ′ ρ2 =ρ20+ρ2, u2 =u20+u2, v2 =v2, p2 =p0+p2 satisfy the linearized system of equations ′ ′ ′ ′ ′ ′ u1x+v1y =0, ρ10D1u1+p1x =0, ρ10D1v1+p1y =0, 0≤y ≤h0 (3.3) ′ ′ ′ ′ ′ ′ ′ D2ρ2+ρ20(u2x+v2y)=0, ρ20D2u2+p2x =0, ρ20D2v +p2y =0, h0 ≤y ≤H0. (3.4) We use the notations ∂ ∂ Di = +u0i , i=1,2 ∂t ∂x In (3.4) ′ 2 ′ 2 2 ′ p =a ρ +b D ρ 2 2 2 2 with ∂2W ∂2W 2 2 a =ρ20 ∂ρ2 (ρ20,0), b =−ρ20 ·2 (ρ20,0). 2 ∂ρ 2 Here a is the equilibrium sound velocity, and b is a characteristic wave length depending on the bubble radius and gas volume fraction. We suppose that ∂2W · (ρ20,0)=0 ∂ρ2∂ρ2 This condition is obviously fulfilled for potential (2.17). The coefficients a and b calculated in equilibrium R=R0 and p2 =p0 are : dp 1 1 ρ 2 g 2 l a = (τ0) , b = (3.5) − dτ N0ρ20 4πN0R0ρ20 For dilute mixtures we can simplify these expressions by replacing ρ20 by ρl: dp 1 1 R2 2 g 2 0 a = (τ0) , b = = − dτ N0ρl 4πN0R0 3α0 8 Here N0 = ρ20n is the number of bubbles per unit volume, R = R0 is the 4 equilibrium bubble radius, α0 =τ0N0 is the volume fraction of gas, τ0 = πR03 3 isthebubblevolume andp =p (τ)isthegaspressureinbubblesexpressedasa g g functionofbubblevolume. Theequilibriumsoundspeedaisusuallysmallwith respect to the gas sound velocity. Expressions (3.5) can be obtained directly after linearization of Rayleigh-Lamb’s equation for bubbles (2.19). Boundary conditions (2.20) at y =h0 are ′ ′ ′ ′ ′ ′ ′ ′ ht+u10hx =v1, ht+u20hx =v2, p1 =p2 (3.6) Let us consider the normal modes of the linear problem (3.3), (3.4), (3.6): ′ ′ u1 =U1(y)exp(i(kx ωt)), v1 =ikV1(y)exp(i(kx ωt)), (3.7) − − ′ ′ p1 =P1(y)exp(i(kx ωt)), h =Hexp(i(kx ωt)) − − ′ ′ ρ2 =R2(y)exp(i(kx ωt)), u2 =U2(y)exp(i(kx ωt)), − − ′ ′ v2 =ikV2(y)exp(i(kx ωt)), p2 =P2(y)exp(i(kx ωt)) − − By substituting into the linearized system we get the system of equations for unknown amplitudes U1+V1y =0, ρ10(u10 c)U1+P1 =0, (3.8) − 2 ρ10k (u10 c)V1+P1y =0, − − (u20 c)R2+ρ20(U2+V2y)=0, ρ20(u20 c)U2+P2 =0, − − 2 2 2 2 2 ρ20k (u20 c)V2+P2y =0, P2 = a b k (u20 c) R2 − − − − with the following boundary conditions (cid:0) (cid:1) V1(h0) V2(h0) V1(0)=0, V2(H0)=0, P1(H0)=P2(H0), = =H u10 c u20 c − − ω Here c= is the phase velocity. k Fromequations(3.8)weobtaintheeigenvalueproblemforpressureamplitudes: 2 P1yy k P1 =0, 0<y <h0, (3.9) − 2 2 P2yy λ k P2 =0, h0 <y <H0, − P1y(h0) P2y(h0) P1(h0)=P2(h0), ρ10(u10 c)2 = ρ20(u20 c)2, P1y(0)=P2y(H0)=0 − − where 2 (u20 c)2 λ =1 − . − a2 b2k2(u20 c)2 − − 9 It follows from (3.9) that the eigenvalues c are solutions of the equation th(kh0) λ th(λk(H0 h0)) + − =0 (3.10) ρ10(u10 c)2 ρ20(u20 c)2 − − Next we assume that both layers are thin: k(H0 h0) 1, kh0 1, and − ≪ ≪ dispersion relation (3.10) is simplified into (H0 h0) 1 1 h0 − + =0 (3.11) ρ20 (u20 c)2 − a2 b2k2(u20 c)2 ρ10(u10 c)2 (cid:18) − − − (cid:19) − 3.2 Study of dispersion relation In case u20 =u10, equation (3.11) reduces to the quadratic equation 2 2 2 2 h0ρ20 (1+A)a (1+A)b k +1 (u20 c) =0, with A= . − − (H0 h0)ρ10 − (cid:0) (cid:1) which has only real roots. It means that the flows with equal velocities are stable. Letusconsiderthe generalcasewhenu20 =u10.Equation(3.11)canberewrit- 6 ten as a polynomialof fourthdegree. The stability needs that allfour roots are real. To study this problem, it is convenient to rewrite the dispersion relation (3.11) in the form F(z)+A 0 (3.12) ≡ with d2 2 F(z)=(1 Nz) 1 , (3.13) − − z2 1 (cid:18) − (cid:19) ad 1 M u20 u10 z = , d= , N = , M = − u20 c bk d a − Here M is similar to the Machnumber, d is the dimensionless length of pertur- bationwave. Obviously,z isrealifandonlyifcisreal. The derivativeof(3.13) is ′ 2 F (z)= 2Nd (1 Nz)ϕ(z) (3.14) − − where 1 1 N−1z ϕ(z)= + − . (3.15) d2 (z2 1)2 − Four cases must be considered ◦ 2 −2 1 0<N <1, d N 1 (3.16) ≤ − ◦ 2 −2 2 0<N <1, d >N 1 (3.17) − 16N2 3N−2 ◦ 2 2 2 3 N >1, d > 8N 6 1 +8N 9 (3.18) 27 − r − 4 − ! (cid:0) (cid:1) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.