ebook img

BSTJ 50: 8. October 1971: Improved Intersymbol Interference Error Bounds in Digital Systems. (Yeh, Y.S.; Ho, E.Y.) PDF

4.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview BSTJ 50: 8. October 1971: Improved Intersymbol Interference Error Bounds in Digital Systems. (Yeh, Y.S.; Ho, E.Y.)

Improved Intersymbel Interference Error Bounds in Digital Systems By X. 8. YEH and FY. 10 ong sl mansion sine 0 camention ul fie Pee han Testy kev us ah be treaty swe acne he wana coatvatinn ef he bound tb se thon she eel on thy Sie Sark IT Ses Hownnive aie give for 2A-any apt! maeme to demonanate the aeoarany oad swiputanat ery uf ou Method, The ree aie fhe a the wablan of dteraining te nar sae of & fin ache fo te datenal imply en 0 gh degre vs ing wer or eben ell ete of evar ete aw ray cera af magus beter the Chere bar. Far gt (960 274 pale shop) in sel Stor evanion of D9 fren ep rate qe 1 XO va 2 spe ie eo Te method eva aia be appli te he enfelaion ef se perlormane of seta ps a aye atone ave ecicn syste with each Te many ecees the seanemiston econ a? a clgial epsom is Lay hinited by vrsysaholsztarerenge carer than by sedi Ini, datersprobal intorsvanes mage rest foe inpertese dese ef the fikere. distort “w Hie fanerabslon chat! ideal ezmpliog ingant, ot nondeal deviodatsiag eamicr Uhese, To ana:yaing such # tigtal data syvtom. iis pert deterniae he ey ro rate due te frsereprvl inteteene aad sie an, 2886 rm mt four wells!" avalnate the ear cuts have bees propo, + prove «dine Ine np bound of ths error ete or the error rite af shawna with trapetad impulse spur Th Tis paper ve presenta imple mtb uate tue up runt lows bon of the err rate witout invoking the ice pae- train eoprasinariar. Ferhicrny ihe she tha for symtoms wth fs rwenaizes pele distortion la than uvity, Tie pont ar ie Ipyudaean be made cbiterly aloe es obtaining un cccurte ott she erm rat of te gatta, 4 eso ews be ili bs Aare AAMT nd heer phi iret ryan sel wills dossbod bre ly i Boerion TT. Vuroue ropseedfecer quer fr eeainy Pes enor probably ea shee ee Fock ere diseused i> Beeson TH. tn Sesion 1Y, ail, esa a09F ‘per and lover bonds and the computation of the Dou By a serias txpareio, Applinaioa a Ys oomesegense propecie of the bourds are desecibed fv Resi ¥. Thur aldiies Ganneion noise cd indsendenos of invormatnn dig ere aunt A simple Work siagnara of diitel AML data emsean in eowe in ig, 1, We cessine tent am impulse 21) having amp nl ou ivi then the shannel sveer TP sgounds, The seater: trai Tonle Rial = REATHITS a In the chance of ohe-inel ais ean ng a, Eva ~ a, a will gonerale gore lp ene, Eswit— am, i whove vil ia te Foner tranaform of a}, [ay] 38 seqanes of ine lopesdent muasi variables, apd 3, — tly 18 1 GM 1) with egal prohehiliee for all izagors, We ube cxsurs! thot ative Ganesien noite ie presale the rystem. ‘has ho earrupted rsotve eoumnae atthe ‘oput te the eecevor Uet-ulor = Zonta, @ burst syste pa RATE 2587 nee nD is adaitive Gaussian i ol power 2° watte, At the ‘etecen, yt) i aatnpel evore aeoonds co devermine tae amplitule Uf the teanemitied signe], AU sapling ime the sampled ego] ie Wed = ante) = Earthy = 1 + wt. o ‘The fines term. is she desir signal while che seaond and the thied ferme opnesext the intersenl inuerlermie and the Gexasien noise rapwetvely. "The a of ling owe! trike door tem — rte o ‘wert om the decision levele given BY ene ‘wenarstted signal lev sion {6}, foe # purtoulae te eundsone) env panty x (Pista) & —2teUred!, ay — Cw — JPisieg 2m Uvteo!, gy Bm Jeunes & fees Meteo Peon lay Hitt, 40m — 2, whore Ii the non ofthe eves 4 al B ‘titnting equation (6) into (7,9 aban Pi Dart ~ a) 4 mle) Er}, we = ew — 1 PZ arly alt) Sw, a Bm 1 Peja — “i PLZ mn = my 2 OIL IZ ete, — er) 4 wt rid1, ac = Hm =, 2588 rm me wn cutuniee. JoCRRAE, eomaREE TL Since Soon rly — Hand nf) ane ally They tobe positive or negative, ryuation (8) reduces to [Peete Man EHO}, w= zed Pela) = oy 3 E Hd, a6 4 m= 0 [er dgenta— m+ ‘The errr rae of th spam is Pom & Pete = Kem — Hy mPL EZ arty = 9 mld BHI. AO) We notie thet in ouation (10) the variables m, a; , nnd n(l) hve slreaciy bot eine, The sequence 7, ) i aesumned to be known™ inthe following nen: ri — IM) iefniteand kona Woe Sy, an where Sy ew eel af N= U distin: ingore (including |= yrw- m= Define x= Dawe - m0. as From equation (12) we conclude lr che infaite sum A ocrvergee absolutely to a random variyhle sa nqttion (10) ear be sleerantaly writen ae Pua’ Jay arn). (8) "The existing moatheds of evaluating eyustion (10) ean be divided ino he following eategorice. sa Worst Case Setimate A wort caso soquenes! or "ove plier” analysis i frequently uscd to analyze a dats spslrn. The evar probability is estimated by setting “gabe as gift erst tern or evn Ties tbl Tp ee tain of Parser thorn teu lars etarenn ee 26 2589 Drew wily — 1) to ts aorst eae wan i oqnion (10). En rng cen, fis estimate Se exendingly posite sie the onwartenes of such «worst eave sequenoe in extremely ras 2.2, Chern Roun Recently, Zalteberg* sad Lusso ypnlied the Chsbyelier iar ality to sqstion (10) to obtain the upper bound on error prob iis: We have shown in Hef. 6 that these upper hound ar in tay fee ll fa asst by ender of magni tua, Pinte Prunoated Pulse Train A ppencination® When (6) dssrewses rapidly eelatiew oe sami peti we rey approrineete the chasnel bys Bnitely traneated pe train "The error rate cen be eau? fy enumerating all the posible com binations of intersymbol iterereuee, However, sino each elealation of the condiions. simer probabikty taker a great deal of computer ‘in, che momber of mst be Held co sevens toueend.” ‘hie limitae ‘ios leads to 4 poor approsimctian of the true chant, ard the eeeor probability eo ebtorned ot ror very sof, Iesnt, It has reported thst by computer sinulation of the ces Tanetion of Ny the come uration time ea bs relueed 24 Sorta Bepasaion Method Heesuly, Ho and Yet" and, indapeadons, Sambo anc Ce-bilee éerayried that scuation (16) esa Be caleuaceé ia tare cf an ab folstaly convergest series involving momoats of the intersymbol ftevfawase:* Frathemices, the moments ean be obtaiaed roadtly tesough recumvner rolalars, al tho en'outtion imo. grestiy reaeedl A bsttse aponosivtinn of Abe eel lnanel ean be bedned bby snereesing the ember u" fern in te pee tein. apoteximation, HRowovun, the error i the Py os inte falmalie hy te tres ton fof the erstem impute reson iy tll were, Tn this sooo we sll vive ne upper and lower burns on te feove rate al die the range uf snytescy of sr msethaa Ni tucson of the intersymbol inesference is reqdited, Fuscheentore, this mothod wil give an accarate astimare of the stor nate with eghigie ann eompstaton ine 2500 TR mALL SYSREN HHH NCAR ZORRRAL, oCrOMA 181 ss Upper and Deore Bound of “Lot ihe intersymbol interference be puritoned into two disjoint ees where Xe= Earle 0, 5) and Xe - Dany— Im. as Taunton (1) ean be rewritten ne p, tow -m ff ert [exe bly = nts +N + Taya 06 Prepoiion $s Be over bal hy Pro Wom tied [eer [leek wre 1 Parti aron, A rrsvided sho trunested syst hse “pen exe pattern, Hid — Zire 120. os Proof: Toe complimentary ere function iy guneee ups Tor following lationship cfe®, 220 (18) tuegative valigs of fs angannnt and atic Joriele ta) + bein te a) Since Xx is symmetrically i ound toro und Ty sane fequation (1S), ne wba, by applying equation (09) that [og Pew tera 04 sur aaa [ooo Substituting equation (20) into eatin (6). we obtain the Tower hound af equation (17), by — rh + ME /Re dy. 0) Dorray snentat uauon mast 500 Proposition 2: P, is upper bounded by tem nmi fy? Peet xe 1 xsd ayaran, em Ber elie" cy cE- Gam Dem + Det Ie) sudo i dine in onntion (1 Proofs Avplying Uv Following impli, esp J=XE2"| 8 1 PD ve eatin Qi), we tain Ps [em es [ole ait ira) [Snowing from equation (258), Ka= ov! ‘the average over Xp ean be performed, we thus have -4 eal 2 | Malte} ated = [ise td 4 Kylewity — Ee, ‘whe t9}}. moun exportation of wl. Th Ins be ahown® thot ke foto inennlity Woe os four ay S exp (08/2) — esp ba" @n = 1G = HM, CAD) Subatituring equation (2b) into 244) we obtain [ogo tale a4 Kana wm Sew lly (6) | Xofebias'l, 0) 2602 nm mer, sen TECULSCAL JOERNAE, OOMOER FL sone of given by equnon (210). Suaticing equation (24e) into (23) we obtain the upper bout ueuualion (2a). Tis inforsting to note thnt the upper hound difrs from the lower bout sly thnoagh a modiieation nf Uw nase power by the eraneated terms, Por a aystem wit peak dinrinn® In than unity, by taking the set By lnge enough wd anoraachess8z0, of approaches onthe hipper besa eoxverges fo he wer bound. Therofore, the exe crue Hbability ean be loeyted within » small range. The compatation time involved for lange enough ie rather minital whan « digitl tent sel ae wl etre in Becton V. 42 Boauation of Pend P, We hove elnanly shown in Ref, 6 that equations (17) and (21) com be expanded ints isp alsolately convergent series involving moments cof the tevatid intersymbol snterferones Wy sven expanaon of equation (17) is oa Py = [2m ~ 1yfm) ore [ore Peay exp 7 itary + mat Ey Merri Mey (a) wes iy «in tw Horie pokyaonil Moy fe the 24th comet of te mondo sine “Th vores expansion ef wouativn (21) i sue to equation (173, Po = (nin — HP2ml ee [reid tan = no Sartre 0m se caaitbepts} eo ‘Te moments (Mya) ean be abuxined throng the chamtavisti ores, avormae ennon BATE 2595 function of Xy 9 function, The rerence orm Ie A ie [Dem (coy howe the axpliit evaluation of the distribution 2 y)itex of DEPP — 2H |e | where By ore the Bernt mm 48 Truncation Rerar Bowl of Rove Pepnsion The enor inoureed By truresting the series of equation (25) at 1} tera in ioe by Be = Hem — aye) See 20) dF ew FEIT aN Ha es tet DEI ml ew 1 et a sy Haan 6 Hes PMA a or (J — 1 >> 4, the Howie yolsaonils are apoer bounded by [iyi | 22 NB NVR Tex el. an Sustain equate and C31) favo eyaion EAN} we wan Ue fall TR | 2 (Gm = Neon i@e) Ease LL abner Sayer — rte = eoidert exp LP 1S.on = Pep — 94 2504 yin re, Sve oremeAT. roRMMAR, oemOnR Ter FRR HL ven ae! On Be ‘whore pina integer which ie chosen to sain'y O'2pe") <1. Sina ‘rcnexcisn error bounds can be abtened fur F ‘The error probability of « 2M-ury digital AML sytem with wn ideal bonds iting pubs igh” operating ovr ido rind selena by ecuitons 25) and (26) to determine the eaxvongeats ofthe method. ‘Tae recived binory puss ie assumed to be bin ee PVCU es) "The syne SNR in dned ny SNR ~ ay" oye @ 1Tke eaneergesee ofthe series expansion method je illstated in Fig. 2 ‘The avetom is binary sith the sampling instant deviated by OOP fron its noonial sariling instant. The SNIR is 10-aR. The set Indes (2 elements, Ley fl, BT nerve tak

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.