On the Lutersymbol Interference Problem for the Gaussian Channel By a. D. WYNER veered wi te HeingeCaloe wal for faceaton sonnet Galeger! pred i oli schon te tees i aon ito ference fae pricier nel tht fhe Condase-TPagier coe nj here Se we Hirt a 1 a8 inpoenut pen pe lemeutciy sir ne ot deena 99 reponierag he Ineo, Pally pom what we eng the sty he me J thie popes we are ermoemed with the Holinger-Callugr mo‘) fi the eorsneua-ine Guussinn charne’. allege rover a cod, Cheoreat “or uh'a channel, and Coca ne? Wane chawe: thal tis theerem zeman valid wien fhe cert of fterwrabolintcrfereoe fem Irovious rrurl sage is tam ingo seuosel, We shew hare tha ndaro-Wouver seit Foils rade euatrlad wren spots. Further, our pruv" is see eletnertany, afer it core aot depend oo reproducing serve! Filler epace shuory Vinal s, we pase Naa Re fost san opertont je pam concerning te eeilily of Ue nde Tu Une Haleagee-Cullager mesa, che chennel om is fo aeilar— w wos fe ants sihere 3) ie the shane! inp, A athe impulse osname of a ess Tincar filter, av a) sw sump from a steiarnry Cretan process ‘vith rworeided spereal denaty (fA cole GW, 7, 8, 9) for tais Henna be seb of AY Tunes La] wit appr: on tae incerval [0, Ph whieh sty 2) oR KELL Bre TELEENTEAL JOUNRAL, SMEAR AL . ® - [cow (Qhus 9 i tae alownble everuge sual “oowur"l, vege wish a set Gf A joint Borel els [f° of fovea dined af, Ph ah Hat the erm peobabiiies “Th random feta yi = ¢ = TY iv ehven by UD with 210) — 2 Gallager vas the following eamumptions| Cxowee Peuje "nae Foie caem tf) Sue: {eh Gly ce ha te apy fi sane th lows averse ig! power 38 ca PT onan Soy? HWDE gh ay cee Pre finn EOF oh ay (ee an where the somber By ie defined (uniquely) by si . A et Fev (Ong bth reagan AEE aul Ae my tl 5) oe Foo How suppose tha: we wisn wip the shansel i succansive second incarvala If [oe}"y ote seb ol AF waoke Savesione wth apport on 19,7), tben the channel wala Ree 5 € Trl be glen hy wt = [hit amide 0 where 1 2 & Mem Dele = nD repmesnte intersymbol inteaferunoe in he inonval (0 7] sign foeresponding to previous intervals. We use yt) instad. of (0) to inten te peveer of satareymbalintenfeenes, With the channel out ‘ut given by (6) we an redefines cod (M1, 7, S, 2) a a et of AF pate Tet, BIN, nesoly we abwve. Tee, however, we eequire [instead of (3) ins a, a for ll povite Ht. "Pe rendoma funetion yt) i given by (6) CCordaro end Wagner suevceded ia etublnhing the validity of Gxikgers Theorers for this modified model by meking the following ‘aldtionelssromptions, Tis Gets that Pr Aid eB [ties v4 pa « ® se hae VG) = [EVUPIE for rome Cy(P) with inverse Fourier trens- form {#1 =U. €< I The aeons astorapion ia tt (2), the invereo Fourie teaawform 0° FyIfi/0-4), ie bounded by ho sae", o forvome de> 0. To Beet TT wo ahow thee he Cordara-Wepner resus olde ih condition (8) malas! hy he ‘ellowing essential y tle oondlition Fy (8) we car Sad u Gi) such Lusk Uf) = [GUN * ad the Joone fier coreeponding 0 {1{1 nits aver ner agua Lat #8) be the inverse Fourier tunnfor of Fe U]/40(}). Then the new condition Sel for ¢utiecely nae: le for omce A, 8 > 0, Note aly (4) Cr nae esenet that (2) isnot a very song adsivonal sasumption a Upen Lrblem: Un wer to ae ieva tae corer probability guarastced iby Pheopest Jorn nel simi a vanishing ear probability fas Tw) for A Ci, Caliagoes pat enquires the recsvar to meke arbitrary preeee metsuromeni« Ge for example Lemma SL in Ref. 2). A 2358 np am svdrene MBENSTUAL JOURNAL, SEDTEMER 7? racteal sytem, however, inpwees cts Fneatons an thy actu ‘th whieh we ean mae mensieements, Thevtere a neacgnable requ ron fr te ing reins yf fe th flowing wish a>», (0) netinek Crook [td for somo » > 0, Thus + is w mcacuce of the gecurtey ofthe msosune- rents at the dour, The channel capacity sill therefore depend on, fay 046). A uit uf nena ght be in « Cx). Wheihor ot nok hit Ue ses ws er) sw Tat i eorsider st the pmublom wie no interferene fen previous haart apes kon the num 3) bus rapnnrs a Uo lore 1D, PL Galloger Lemme $5.1, p. {19} shows that knowledge uf the funetion (0, 0-5 C57, ie vapivaert tu kamal of rt olan © fect) coo} Phie verte nas be een i youn ay of eacstoally indepondsrs standard Gaussian ww fallona, Lob where 2 it a sous ‘rites wed ube weelan is dt vin ~ [ke einde, am ‘where #6. dened in Section Td (othe chanel input, et be the subepnee of £3{—=; =) sponned by the erthorome) funetions 160315 elie om pA Role 2 Tad Py a hs psn of tan the ssp 8. Mla = (a, ys oy ahem ete en Co 0) i se expansion of Po) in he bain [2.0 ‘We il note any pres a the 80 expen Fa tho Fat hich follows tory Ue eaeliy the flies oarmagunding tw CUD and BD FOG] thet 8.0) has uppors am the iterval 1, Th Tat [21% be a sot eles wie pzueners 8: = Sy an Ta Ty Lela, be thew eneresjading v2) =), al ek = 1, 4 2. Then if the mlniasurdctaice decoder is used Bu = Prete = Pe Yili yw 1B Iya, | =P YI ez Me, —w) i WY lm, ade sll, wT, Sager 00% EYTERTTRTANE 2358 shone] [* denotes Blea neem ord") dovuter ier prduat Ta partieuar, Pos Peng B® Peta, ws the ow IP Bia —w ID, Ie i) where $208) — SE Bete 7 dy, the complementary error function, Now, le us auppose that we nee given s eode (M, Te Sy, 2), Ie.i)y BOLE for the ninterterone> made We eso sume thal the 8, corrsipond to the minimumdstance decoder. We now form now cade (24), 2] ith parameters T= Ts = (LP AYP, aod 8 = 5; = a8\/(t + 5) for use on the channel with intersymbol inter ference (@). We set ato fe O, 0 Mee n atane=r, a3} whore of > 1 and @ > O are eebicary, Neve that ee ve allowed Eur Ua f with 3 tesa ean) inputs, We wk apeity the ‘leooding ors 5 belo, mentioning Lere only tbat se doealer will laberve the revived waveform p') enly for 0 < ¢ = T, "We ean diveretve (ve chartel rsagty a ahove and consider the hannet output Gshen 120) fe pu be given by the woe =a, 5) ‘where wand 2 ar Of provions shanna Cents i the expansion of Pai in tzz wo EO ly ae (10) ant Gh reprsants the fect ‘athe vector whose eaonintces are the cote (oan “xe— matte ana Saw, an where 1 "The decoding regions BY will correspond to the minimum-distenee eee, ie a" Be i the eoreeponling brow in Buen orm tora, then to lle, (joo) Th for yen Pristenth - PUL Now let a S; > 0, and RO S 2 < Cy.) be given, the (VF, Ty By hs} ende [Os 15117, doused above, be a act of ones which tiny Theure: 1; Lat is aM eo aul exp | U S)- 8h beltal 2080 sue weLL AArRA mIerSTEAL SS, SRPTENED Ant Wo will show chat for 1 eufciontly Large, the derived cede bas cvarameter A 25 2, Thus we pill have ‘ound e sub of code (M, Ts, 8, A) fas the model wath imrsyauelinloarenee with 5 = wi tm) Sa giiy. weenie tan} and sam LMR Be 8 oP a+ Sinn A, ) continous avd w may fe cise airy elo 50 1 tnd barat che fosexo new ave coals Tien 1 for th intenynba intreence come which oer rnin rut Th trains estaba hat tne eo prbebli ere eve code. ‘We wl do fhe by shoving tie or, slice To) Tor each Pe Davee ard al patie Te GMOeRH Pell eB a nog (18) wil ello sets fo: th tlloving lente (i Trovit ash col hy rn) ina fo Tey (15) soa, i th 09 Lari 8: Bor th code If nin | ae Lenn te day 2, PS OMT). From Tammans 2 and 8, condition (1) in Lemme 1 il be entised foe, sulin Wag. Ts wl (15) bested for Paufiersly Proof of Femme fs Since B, ond. 2% are the minimum-distance decoder, he Tell mere of (18) Pr iyteat) = PUI et ome | Ist an, ill 0) “The right mombur of (18), Pr fy # Bu} ie pvon by (13). Consider the Allvet— au, |] = lv ~ ot, |) wegiw—al en svar anv 2861 ‘But by the Spotless of Lema 1 (5 Qe wile lables: “thus the event Sn (20) flaw, 09 2% ue — a, | emma 1 now flows fram (29), (18) andthe above Proof of emia 2: Tor tho codes ( (3. B Dr lye Be) S emp (— ER, 8) — OT + TDI a that irom (1) SG ||u,—¥.[) S exp 1 BE, 8) — AT, + oT Bios, ee Hy ila, — a IP = Stet, 8} — en, + oft, ‘hich ples Tema 2 Proof of Lenora ds Lev eb» te union alias with P05) wit tal Ley son hat ie) = Pathe Pat) | wee | Inline the 34m, to rsn=| J Roiea Dot singe all functions is and therefore & have auppost on (0, 2) ate a sisilfeoay vas 8 [f'xoa] here (i die in 1 Consider fine the = —1 term i the shuve summation, For osren, 202 rit nm aySEEN sucuniow SCRA, sueranUEE Tt Changing the saraie of integration to» =~ 1, wo hevo = e5in [es 60 mci (9 fvaiety e sd therefore PATS, gent Tran [eons e Next consider -2 = > <0. For 0 hove sie wr obeain 5 T,, puclleling the aged | splsing condition (07, we be aorsese [~ 1 ant A Lis wha) ean weal - ast ay asa + ay am be important fut hone in that enn the tear wl jn 1), Taeefor, est w+ ama t Sabatitating (28) and (24) neo (22) we here fens en smash unstated a8 Hens rea, Sy hfe eas ot Sinoe the suumation eonverges, Lema 3 ve have |]? O1T*), whieh ic 1 Gage, rman Dry and Haile Commi, Ne Yor 2 Conhma dT) ent Wagner, TZ, "uemaubol Interference 9p u Cuntinuyae- "Tine Gigaiat Cousecl® i Tene Tne "bare TPIS Sur 4 1h tomer, C. Lin Son Thre, Now Yok: Me