ebook img

BSTJ 50: 3. March 1971: On the Design and Analysis of a Class of PCM Systems. (Heffes, H.; Horing, S.; Jagerman, D.L.) PDF

5.6 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview BSTJ 50: 3. March 1971: On the Design and Analysis of a Class of PCM Systems. (Heffes, H.; Horing, S.; Jagerman, D.L.)

On the Design und Analysis of a Class of PCM System: Dy I, HBFFES, §, HORING, 0. E. JACRRMAN (aan ied Ste 20,180) This paper cmsiers the problem of kransmaiting Debilimitad signals wing binary signating over a niefvor channel, An enaltea famenor: {e proened forte design and ennigts of alae of PCM ayes whee pak ern ao primey tntars. Bur psf late of pu signals which Fctuies determine anpi-onstasned lawainted funtion? as Telltale wideenaestatonar, wconuender, random pence, Tous vu clainad whieh unt lenge beeen the warn rae ‘ati ed room ctin ‘This peace come the poder: of transmitting bandied ei ue wang binary sig ing over a goisectue chavwel. A funtios] block diagnars of the tye ow POML syst user eonsieratinn it a is Fis. Tae toe mor differen letween the prodiom consid heze nt previous sor ures nessune 92 stem: performnner at signal fleests considered. The swsasnse of system performance saucy eon filered. ie. rol lo the aitegral-mextexared sor! This {xne of performnos sass aesell to a lrequeney-domsin alysis. While this evterion i widely sed, it does’ provide direst ifornetionrogaring ti ivf the ever as a funeton of time. To Tivetigate tht tive belvesinr we vee a fnseomein appaeh and tap the main error over Le we sneseure of syetem performance resus of the desize to got il: igus thet engineers would orally eal bandied few, eiaamete polynomiahy, snl a ‘well ex functions ia C4(—=, 0) with five bandwidth] we (at a ste oye CM ied Tae ete ws na 918 gre syanentmcuemsenl souaMaL, ste gar woe eH st a etn Fig HEPOM at somewhat broader class of signale chan orally eonsidered in the Teeeator, (Che input else ia usually conidered to be = wide-conee stationery random proves.) Ts tis papar, 1 fachnigue ie precented which cimultancousy slocts the carpling rte, quantizer end reconatrution filter in euch 2 way o minioiae-w bourl om he pee eeor between the reconstructed tnd teunsmited-senals. Since our interest center on studying the trade-offs between the variour ayer parameter, we desire prviee rosthomatieal results whith eae vad over the entze range of posible syeiom parameces. By using ax upper bourd or ayetem performanee tie sim was achieved Tar sevren! claw of input sigs. Using 2 cera wach evaluates 2 piven enooding decoding wactie in tonne bf performten for Che worst xo ia Ue palolney, ape Be tsoding-dovodirg algoritm, which wil be ealed Caitorm PCM or CECH, a aipgceted ane. evaluated, The acelts ary peeeced in the foe of & set 0! nonmaliged curves wi Plot an wpe Hed st the pereentage ero> catoeicted with the aeeposed UPC spre ee ‘function of a rormlized parazczer,p, which ropronent the eetio of the bic vere vo the bexcwdth of she input clic. Te epeimizee values of the various poramaiars wie deine the erstm eam aleo be deter- ‘ined trom che plot (these inslnde the aezapling ents, the ramber of quantizing loves snd the delay sesocaved with the decoder) ‘The elas, of Funokions emis af wtineFanotions of exparentil ‘onda one ead type e whieh are bousided om the nel aes" Tt inlides fonctions in (2) having Sita mdian si, wn ‘wigonowietie polyuomial of degree The penforaes of 9 giver sjete: ie detined by lem Segre ba fre 1 dots eta par A eno ss Sincontt tant rox sree a9 = gap sup Ih ue — a9 |) © ete) Ue wa of then rignal a timo nd) nepresents {he vaio of the output signal at time ¢ eaxresponding to the input feneton ws 'The int fanetinn aia a element of B, and the values of tho put ead ou tout igual a any time fe 0, bolong to « zormed Tinoar sae, <2 By oper enoion of Bund the nom or) w aot of ‘Sffenent ingot classe ead porfrmines mcuniees one Tie tented Spwitsly, deine the sot BAM) by BAM) = las e Be 0) €8 || 210 || SAE {i arriving at the proposed algorithm, the folowing represeratin fs ged for secant of Bonde BAAD aig = visnean e where ay = ® 5) = ele o "Thie representation eval for any 3 (0 1), henge 8 muy be cueen avoropsntely Zor exe appeation. ‘The parameter & wilh elle the Tenet) guandbanal snae the time belwern samples ia x(k ale ici lee then the time berwsun stones x whith: eorerpond to Ue Nain eae “Tent: he paoceed algosehm 3s seems for upprosinaling any emet 0” BfME bone nite ace of oroprately cere Fame tions, Tse fauelions ate determined by fy tating the itn wie, 2). This erineation proces proiiene nn apyomleastion to eam ae a This fo penal ene afm seamen cles af {"Fhe meule resus the aber ie opleabie he nso gna havin seston (evn al WT cl Lae Us Bi 900 ee mt ssren TeenvteN okay Sea Tor ‘Thos we have replueed the xeuirewent of trunsuilting am inte fsuber uf sump values by Ube problem of teaneaitting «Site tiie. Tw aebieve our wlitmte objeetive, chess sample Faluen are ‘en tized and the quent samples ere used to -eepnsrack esx oft = "SE" sane, c) ‘where i) cupresents Hae quai elt of wh ‘The eacoder will sherefore ceusist of approprite quantination ofthe ioyut samples wile the dover simply mest thy roonieuetion 17 te Load vies ing (se yuatized esmplie |i, the eg (2) gies io equation (An sra’og itarpretation of the deco g Drow is dria i Seeley WU boll bo not at ie one onstria g(t) gesording ta enue, (8), «delay of P ~ 12 evan reauirod, The ticeofe between thie delay gnd the aecuraey of 2 onetration will become war a the revlle uae oreunlal Having cuaslrsined the pram Tore of Ue pmmpenel sylem, we now sont to detarnine tke vations pararoters which define i ow costing sete and quantizer) 1 seeh nse me te mvsiine as Upper bound en tke velue e+ Deas: of the binary nota of whe sigvaline ‘hich is =eing consiered, che crimber o: quantzation level is eax fesained 19 bo 2 whine» fe an ingen Ths» repre the nurher Of bits per eample. The bit rue is then xiven br Ho The o tis convenient define & normalised parameter gy which given br zB ® oT shore wis the cuian basi of the put olan an fi the band ‘vk in Ha. Ta tera other parameter, Fram equation (2), we ave y-1-8. o lees 9) ese serra oa In tems of these rameters @ simple box on Ue reeonsteuction error reals "Lhe onnlyss of the reoonsirsotion oreor, given in che Appendix, hows tha 6 dsned by equi (1, sabes WK +09 oy where a K uw +1 a) = up ep | wR) as ‘nd. 6 i given by equation (@). Taus the setual valu of e which is ‘nieve By the proposed algorithm may be lee Tau Pe value «given by eauition (1). Infact, since the remnstruction formule (8 i inter polstors, the ern at sarple points can never exceed the rast quantion- le oror, ase). Tha fst term on i ight-hand eid of equation (11) Iney be view asthe eror dies teuesting ui) as even by equation {2 while to seoond orm represents the qutatmaiea eur. ‘Te alot Of the dey on the eer em be easily sen "mm equations (11) naa (12 As n design proceduze, on might fast choote the quarsizer whieh rinimiaes eo) and then rletermine the value of » [subject wo (10) ‘whieh minimis the aor bound wiven by [pe equation (11) the nest sections, ever ios apeei ens ave eozaired and exes ergo esrvee are jvvenced fer cece exec Th this ease, © =R the seal line), anda] fl. The BG) ~ fw eB, WHER [ad | SVEN "The ayantioe ebicheinimians gly] for this eee ie own in Fig 2 ‘The optimal value ef aa) 38 gives 2 4 6) as fe infematineemton” bows LAT = aC A sheet ei eT eine ae ee 922mm. averen omnes soma, ane 18T 1g Union cuanine Tsing equation (14), equation (14) besomes as For inter une, we deine a9 or the present cae Ky ~ 1nd equation {15} thus becomes «8 a & ‘Pao bouud expresetad by equstion (16) ia vad tor any allowable set of systom parameters For fixed valucs cf», P, and Fy che value of » ‘rich minimises @ enn easly be found. If ‘ee denn the soevelaed reontng orror ws 100(¢/207 RK), then Ki. 8 plot this as w tunetion ‘of sing the onimized values of . Those values of» @enoted +) ae indicated on the curves. Curves ae plotted for KuL/K = 5, 10, 20,3, Ry tron hae forthe spe of wing the ae of the wet sot aa Far cw atau Ci eon a ae ft aa get syria mene, JocINAL, wane nL snd os, Sage LZ Ks 2 ‘ora given yale of the eaia L/ fmocinie nry value of Lalslsing L/L 27K. Using (12), the eoeresponing valve of 7 eon then be eumputed. The delay ‘amiated with rsoastruction in wecordknee with equation (8) ia then iaven By Zy = T+ Lh. Av diueuwed in Seeton V, when an anslog fnplemennation e used forthe reconstruction, value of K— shan Tyre atl the delay esapeaied nth the futer wea aroomaplies ths reconstruction i etvon by Ts = (Lt Wit ‘Ta lustre tke wee of those curves consider che oroblem deSind by ‘the foloving parameter yelus ene x 1 B83 x Why ‘Using thee vais, we comoute p12. From the eves, for L/K=20, wwehare SDG:M = 67 petoess, ot — 8, Urag if ~ fe have # 0.08%, Since 8 = 2h, we have le = 070 X 10-* seconde ae 18 = 1.26. 10° saplae/seou. For L ~ 40, the delay esociated ith Une eto (ang fouation (@) to aesompish the raeonetraction) is sbout 32 ge or the cormcponding aalog implementation (Se Section V) these remlts forepond tn n vain of Fo 20 (and AC = 1) with x eomosponding Ahly oF 188 Teds clear that she reemnlned sugar the eure in ig. fait ‘hein use in aide variety af seaye, Foe example one ul case Ansar questions such a For given i ‘ce al gua Tevet? (6) Tor a given bit ets, rhan Za the Inger alas of signals chat can be aandind wath « mscimute eror not exceeding a pmvanrined Invel? In the nxt seetion, anwlugous ceslts ae developed fer some important clases of randoms spit signa of Signals, whet inthe smallest Wit rate tha em a entrant exounling peated Ia this eoeton we conde the eaze whens @ ia the apace of sero ren seoond-order tenders werinblee* with norm given by we res evens os Then BAAD = ju sw eB, wld) eB, ee © MI as ‘hus AyCM) conta of weed unr utlors prowess (9th ey) © AD) svith semple Sotions hie all i B,~ Por Th impostant speci ove of akdestam etationsrr avian proses, toy — 2, Kor a fase {ve quantizer willbe charweterzed bey Ube propery Unt i elai- fnizes she mvan-equared err al Ihe suxipie timed. The problem of Tlsgning sack quanticr for» given probability distibstion of the Jngat saiplitade Bes beow emeideend by B. Smith An approximate tes bur ne pins aie ore ea by aseca-2h[frma} oo) whem pi) ete pes cauiby fonetion fe). Th enresponding quarter # deer in Ret. 6 ‘For the mpm esaee hers pn) is afer, yoann, a expor ential 2 on be etiam the fe ~ he en ‘whasy Ke ie a constant cresting aa Ee pualiatee tition fans finn, Teale I gives Ue value 0° Ka “er fae of fa input clases of innsiest The osnd ov the saeon perfomance wat $8 given by rian {LL} ean sas be wrile> me _an aM. F verees U4 Ie ea wich is onsen form o the corres: Imi for the deter= Chine save fore eqnatier (1B), Tae aga of fe vhrirnaalseie furves of Fis, & tov these eeser is thus ienaea, ly te preci Aveoribed de-ariastie es ts ineerssting to wots stl for toe ease of a uniform smplibule diseibation aswel ts the wostlnde eoslnined spat elas, = 2, td the optimal quasars i sani qvantiver. Tu earh of hee Tr the next seein, the isersreation wal implemestatiss of the own sigan wil be drone Twa he shows thatthe wale Tiniaretation eke the sere: of « PCM system where the sapling 026mm asuuaveree meus suum, acon oT ‘Panu 1_ Len Sree Desenaerroy bo sat) xo = a * ate, quancser and Jon-pas: filter wbich is used vo accomplish the Arooding ave ceronty charen Tn Wis sention wp dian an arog recerstmiction in the UPCM system. For ‘lw analg yeeneseuctign, eve apeeem tees the corm ‘hows in Fig. 4. The iseanfeation of tae loa-page Bar eslts “am he flowing analysis Thowe ft aise the seporae, BF, ot eaura,etatimnary fer [itn impee response 21 | 2 the Saput wie Som aa oa wn a9 = "SE saan am coy We now conser h(t to bea delayed, coasted (for negative tru ee ee [=| = Mig Analg TPOM ete,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.