ebook img

BSTJ 30: 2. April 1951: Zero Temperature Coefficient Quartz Crystals for Very High Temperatures. (Mason, W.P.) PDF

4.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview BSTJ 30: 2. April 1951: Zero Temperature Coefficient Quartz Crystals for Very High Temperatures. (Mason, W.P.)

Zero Temperature Coeficient Quartz Crystals for Very ‘High Temperatures (atone Rein on 15,1950) pe thal evar nw tematic ‘Sistecar ender ens ede eve sea ae 1. Isrtoaeeaie ‘Mont quate crystal sed ca conti the frequency of eons oF time messing devices are used in places where the ambiant temperate doe hot ceed 0? to FOC. The cxystas ave sual adja ia ale so they have s 20 fonperature coeficert at » temperntare of about 80°C sn they ane tempente roniralled at this temperstors However § fess ves eran or rhick the ambien tempentate iy be conderahy bere sul for thee ass eninary AT nod BW cyst. fr exompty are ant misony This even fom Ea 2 which abow tae fee ttueney wart for Mes erga over temperate ran fm — 100°C UU" 200°C, For exutpl, the Zale eyuensy temperstane sare for the AT cut cecus at am suple of 8598" ration about Lie X ace ‘tom the Y cat By going to 3556 reatation shout the X ana mio cecure SC 100°C, Fur the HT cut sown by Fig. 2 the aagle of 40°10 oneal tion gies nel pannboie sage centered a 20. Dy caging the ote tacion (© 47°27 the pera caters et 75°C. ence fore withes to ee the teperstur for wish the sey tee tare ectiien arose histo inersee the eottion abot 2 forthe AT tea decrege it forthe BE eat "ae doioune needed for either oat Mion can hes be determined evalining the elastic sonst Sue ie a ureaatinn sel temper, ae tht =the man pape of te tue. The rests are seplied ta determining ce beet anges of eaten Tarthe AT, DT, C1 and DY typ enysal natn seo temperature coe oxo TEMUMRATCAR ooRRMCKESY QUOKD oRVREATS 36 268 cm mtr ment Treen Joey sea 9G Cents for any arbiteary venpecstoe. These calculted values have been her experines lly fe te AT lye eye an He se ad oes {ies oe posiate iy the elevation. WS show ie thee eis] Angle of FSS which real'< in he High tenperalure of 190°C fae Seki i esi ty eis ores ania AT typecryetal AE Beauzavius ov sue Enssnne Cuseasiy a 4 Suweriy for Lumoustva A emple method for taking ceoours of the temperntu tems i te pend the frequencies for che known cate in portss of the temperstze ‘round some ference tomparatue. Since ke data of High Land 2 rt fom IDC to FAC, 4 voesnlert lompencure SOC. “hur eee ae ee vee Cis enpeatute ange the Caquencies measured can be accaraey repuctened by temss ‘Leading the cubic at che Lighest IT ston 25 SINC, equeion {Lean be alee for the conarants #0 apa ied hore che ebscripte ort Us Kerala for why the fosanacce fre measure, IF ay thee eqeatons er he AT crt a 3515 fd the UT at 16) we find, forthe Sree, the eqaaione fer — 161% UL + 22 HIME = 50) $88 TE KT = SOP Ld n= DST HOR — 9 3 UPI — 90) " S58 XTRA) — NE — TH XC TIRE — St = In onder ts ohio’ the fragceaey seal the wernion a equa with engl ef made ofthe esaton fora thickness exeorvtantion 1 Lab oh fees ce OA intron fy ray Say wt # is the thickness of the eral p le demi, she angle of the tural of the plate measure from the Y acs and ey sud ee ace of the seven eatie constants of aria mre al cotstant acre eld "This sin eval foro nite plate nt sae gal appeoxzation fos erga wine exeesartioal mersions are 30 Uo 10 ines the ik ness diersons, Sine ene ave Hines ess, the Low meastements for {he AT aad DT cote il give only vo raha soa we ns measurement far snother angle, Ae distie! in Chapter X, Setin 10.2 of "Preroacric Crystals an Their Appleton br Civasoaie" the romairing ext ean bc obtained by messing the Lrichacw dar mide of Yeut lte or the face tent mode of« sus cxyta. The litter mei cnsierahiy easier to dimension ole br stain 2 feaquensy earesponing to the shear made, Teble I suies mssunenacs for the froqueney corstant ai © ¥ face shear mods for a crtal having the following simensions: Length song the X as S080 mn, wih alng the Z axis — 7.628 mm; tides Sng the ax fs 0990 wan, High Hares weve used and the frequency foratat ne obssned Io dividing the fequeney ty the os “Tas reqaoney svn by Une else anata accorsing ta thee fo fy oe apt In caleutting the of sown ors the sexta Eequonces esared, aectccton is inoduce yy the serianvsere expansion constants le frpatle Ths fll foes equation 5) sfage fc the Feeney trsand p the dry nrc change with tenperiuce. From measunemeals tquoied by Sosmus® forthe expansion along Ie Z aie popular fe the Z axis, we fad Lee alt h 18 x 104 my 4 28 x MrT sme = 1s x rer so fog = MUA MG MONT — $0) | 63x WHET — SHY ° = 19% MEN AF od Multlyng tie tose the woke enn Vee aL 9x MA IBA HT — <5 x KT SM nse ol Ts aan 310m ann seer recmsteat. Soran, APRS. 1981 Since the diy ste inven af evolu, the aguas of the frequency ‘onstant fora crystal whe mension is meaared at SOC mst be mal Del hy de aco hk Lele Jn onder to comect for the afeet of tomoersure expansion on the ehstie ‘constant. This eovectio is showa by the tid column of Table 1. The orth column i tien the value uf cf for the various temperatures The Aft: column shows th values af th a, 2, S04 ax constants Zo the tem Dezatue yatation of ch, “Table 1 ovaloats one ofthe cacti constants of the frequeney enuatin (4). To ceauate the orber Ivo conto ss me the frequeney peat otaw | ae | RIT eseaee ms one Re owatsts fa she AT aad BT eat gvea by equation (3). Over a tempers tere rage the Usha # is given Ly the catia: Fe MB eate tH aaa) 8 where and J are the vals of wil Neng long the F aad Z axis ex- pessed aba function of tempersture, Inserting he values of (6) and (7) Tn equation (8), the clastic shear constants for tae A end cats become SINT) = 2904 x 100 — 12 tO-HEM — 50) SEAR x 1 = 50 | 172 HET = SOI} eE(BT) = 6807 x HL Dx IO-AT ° 06 IT = 5 = 238 OT = 5) rom epaton (2), the faqency equation, we ave HON ~ OsR5R | OST G1 09m AIAT) ~ 0.6861 ch + 03330 ch — 008 ch Since cis steady knows, tke tvo equations cin be solved for ely and iyand wo nd reso iearenytman comnzrousa quire cewstts 371 = onmndtn + 09008 AT) ~ asa cy = 0080 GT) — oa egiaty — o226e a ON Ioscting the vans fn, Table Hates (8) he tae cate cone tots Besos S258 0 — 171 1-4 — 50) = HYP = S865 X10 = SP] HE M025 x 0 EB IO 3) 5X IPT = 50" 7 10 HUE = SPE) = isan x10 + 905¢ 19 «Fh = 20x LET — $0) — 6H MET SPF Yo determine the frequency an perature cvelicets for any angle one subtest vale ofthe ellie crassa the tempeteture cx pansion clients iz the sroquency eyatiag fH), which sects in the cxpresion P= OMS MI 85526 n"d— $AD6sin gone) | IONE — 90) Teco! & — 828 sin' @— S¥6 sinh emt — 13 Sia es" #— 46 sinacond| © IOUT — AOE ows sic + SEE (8) fo Maintome a0 mr — anaes? Sthsin?o+ Un Deena] FY sin cose — 12 st tec UL, Peomrerts or AT avy BT Cor Crvstane Lavi Zim ‘Traennazents Conveterses ar Hic Trewern “Te proves for obtaining high frequees cate of the AV and BT type that will have ae tempeminre concerts a Pigh tenperatare fe sate 00°C isto eit for 7 in equation (5) the vane T= x0" | ar ay, Insettng this vale in (4) aed coleting the ems fn powers af AT, we a PX UP = [513 ce + SATS la 8 — 5405 sing ease — O0m23 sin cst — WIS vie? ewe A] | (AT) XE [807 cos! 9 — 126 Sut @ = 186 end coe — IT xt cos 88 x! y oma] | (ALEX IMIS cos? (15) Iss! 6 862 sin? cas 1+ ATP XI STS ont # — A wa! + H130 a8 cos in6 cos — [2s Bote = 37M rm we ever THCMACAL JOURNAL, APH 181 ¥. Besemscmss so ti Rewanense 02 sues baste Conenasts ove « Wrox Trasaxar0s RANGE Th oud: wm evaluate the remain of te sestic constants ease: iments were ace the equer a face Xa nti eres Ger the seme tempore mage ftom —109°C to —20FC." The ong Tone) eeytals teased vi lenge at 207 0", 30" xa 00° Irom che Fas, For the dour crgtaleteasurcd too reels are shown, by i ] u | i om _~ i JwOAMENTEL | rT | ae : 16,30 _ naa : ‘Teble The alysis fr fa = fa "Po covet fe che temgertsite expansion catiiens the Inrease along {inven by he ast eqotinn of 16) while P= 30° de ae Pa 30° = 28 78h Rh} 129% 104 — 50) AE SAR X(T = SOF = LE WET — SO) Fd ral he the consents 045 oy an oy 09) 1a 60 = Fe 25 = ALF YS IONE — 0) 308 3¢ WT — SO M9 X HHT — 50) bo] Sine the fequeney «lng chin bu ven Hy Wie equation hag = a co I> Zoe 8 J tng the lenge correo fom (9) and the density orrestion From (7) ca comes forthe ele if tenpessue expansion, tha sgn ee my TO ey 536 nck Sve TRCISHEAL Ju ARIE BSD Applying Use cortections to the frequency egeations of Tale TT the esa rnplanee constants bere Hoon) = A= LOT X I FS X IO — BF ESAS IPH = SOS 383 HE BDH ed aaann) = 8199 X 10H U1 X IO — 50) $2165 x 10-%T — SOP + 219.4% 1-50) Been = 1402 X10 AIL LLL x 108{r — 198. rH — 50} = 916 X HOME — SOF] res = 86M X AOE | WHA LOR ~ 50 EM LOT ~ SF HE IC OC = SOP The equation for the emapiance constant sf furan X-cut esta! aan angled from the 2x fas been sh a le! oy SE = shomte + sflsin!'o— 26 on én co) oh (tabs + a) sat # caso Solving for the sonst in torso the compliance forthe four unles aca Ho Scar = Bays Bon = Mier —Fshewns Gat ado = — 2 ea eace aang he reuse nd fh aT 0 ML 163 3 1-H PS $585 HET — SPH CIMT — 2 Lo] Se MOT x AOL H ISS x IOUT ~ 50) PM Me + SOIT SOE A= 0496 x HT} 19S x10 UF = 8 SX = SOF Sx CE = (eB 1 oh) = 1788 2 10-300 x 10-4 — SO) FAO XT 50) — 98 KET OP Fo) gif Pome sok Metin Wy se 2, ain 42330 TRMPEIATORY coREMENENT quawre cows SIT AL the complince constants ane now detec erent sh fh and fh. Brom the zéaion fr oerystl in the quarts eas! -wh- aw the remaining constants can be obtain Tseting the values of ech and ef fom (12), we Gd A= 1986 OM BOL x LOTT — sn) $0 x 100 — SOF 28 x 10-4 Wha 28 x WM — 138 x OH — = 8X 10H = OP FXO AEE EY] 0.8005 x 10-1 — sis 10 Her — su) = 210 x 10-YP = 50394 610 3 10 MEF — SUE >) sho 040 x 10-1 — 190 x APH — ry = S18 IONE 50 285 9 1 38 Ho 8, It is aesines desis use te vole ae eo of lempens tare, The remsining vakee cn e obssined froma she elaioes vale for ae = By tha Ba a gy bere mesh Oh tay — Mis a= chk yo Hh= 00 Xx 10eL — es XIE = 59) 1ST x AOE = 50} — AO RAL = SUPE Hh 96% 10 510 x ET sy = OD ET = 504 eo x OAC R635 x LOHME — $85 9c 1-47 — 50) Hs xT = 50 is x wor = 685 x 10TE — ato x I-40 — 50) = 1300 10 EF = SOV HD x 10 EE —SO)E

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.