International J.Math. Combin. Vol.4(2012), 33-39 b Smarandache m m Curves of Biharmontic New Type b Slant 1 2 − − Helices According to Bishop Frame in the Sol Space Sol3 Talat KO¨RPINAR and Essin TURHAN (DepartmentofMathematicsofFıratUniversity,23119,Elazıg˘,TURKEY) E-mail: [email protected],[email protected] Abstract: Inthispaper,westudyb−Smarandachem1m2 curvesofbiharmonic newtype b−slant helix in the Sol3. We characterize the b−Smarandache m1m2 curves in terms of their Bishop curvatures. Finally, we find out their explicit parametric equations in the Sol3. Key Words: New typeb−slant helix, Sol space, curvatures. AMS(2010): 53A04, 53A10 §1. Introduction A smooth map φ : N M is said to be biharmonic if it is a critical point of the bienergy −→ functional: 1 E (φ)= (φ)2dv , 2 h 2|T | ZN where (φ):=tr φdφ is the tension field of φ. T ∇ TheEuler–Lagrangeequationofthebienergyisgivenby (φ)=0. Herethesection (φ) 2 2 T T is defined by (φ)= ∆ (φ)+trR( (φ),dφ)dφ, (1.1) 2 φ T − T T andcalledthebitensionfieldofφ. Non-harmonicbiharmonicmapsarecalledproperbiharmonic maps. This study is organized as follows: Firstly, we study b−Smarandache m1m2 curves of biharmonicnewtypeb slanthelix inthe Sol3. Secondly,we characterizethe b Smarandache − − m1m2 curves in terms of their Bishop curvatures. Finally, we find explicit equations of b−Smarandache m1m2 curves in the Sol3. §2. Riemannian Structure of Sol Space Sol3 Solspace,oneofThurston’seight3-dimensionalgeometries,canbeviewedasR3 providedwith Riemannian metric gSol3 =e2zdx2+e−2zdy2+dz2, 1ReceivedAugust28,2012. Accepted December2,2012. 34 TalatKO¨RPINARandEssinTURHAN where (x,y,z) are the standard coordinates in R3 [11,12]. Note that the Sol metric can also be written as: 3 gSol3 = ωi ωi, ⊗ i=1 X where ω1 =ezdx, ω2 =e−zdy, ω3 =dz, and the orthonormal basis dual to the 1-forms is ∂ ∂ ∂ e =e−z , e =ez , e = . (2.1) 1 2 3 ∂x ∂y ∂z Proposition2.1 ForthecovariantderivativesoftheLevi-Civitaconnectionoftheleft-invariant metric gSol3, defined above the following is true: e 0 e 3 1 − = 0 e e , (2.2) ∇ 3 − 2 0 0 0 where the (i,j)-element in the table above equals ∇eiej for our basis e ,k =1,2,3 = e ,e ,e . { k } { 1 2 3} Lie brackets can be easily computed as: [e ,e ]=0, [e ,e ]= e , [e ,e ]=e . 1 2 2 3 − 2 1 3 1 The isometry groupof Sol3 has dimension 3. The connected component of the identity is generated by the following three families of isometries: (x,y,z) (x+c,y,z), → (x,y,z) (x,y+c,z), → (x,y,z) e−cx,ecy,z+c . → (cid:0) (cid:1) §3. Biharmonic New Type b Slant Helices in Sol Space Sol3 − Assume that t,n,b be the Frenet frame field along γ. Then, the Frenet frame satisfies the { } following Frenet–Serret equations: tt = κn, ∇ tn = κt+τb, (3.1) ∇ − tb = τn, ∇ − b−Smarandachem1m2CurvesofBiharmonticNewTypeb−SlantHelices 35 where κ is the curvature of γ and τ its torsion [14,15] and gSol3(t,t) = 1, gSol3(n,n)=1, gSol3(b,b)=1, (3.2) gSol3(t,n) = gSol3(t,b)=gSol3(n,b)=0. The Bishop frame or parallel transport frame is an alternative approach to defining a movingframethatiswelldefinedevenwhenthecurvehasvanishingsecondderivative,[1]. The Bishop frame is expressed as tt = k1m1+k2m2, ∇ tm1 = k1t, (3.3) ∇ − tm2 = k2t, ∇ − where gSol3(t,t) = 1, gSol3(m1,m1)=1, gSol3(m2,m2)=1, (3.4) gSol3(t,m1) = gSol3(t,m2)=gSol3(m1,m2)=0. Here, we shall call the set t,m ,m as Bishop trihedra, k and k as Bishop curvatures { 1 2} 1 2 and δ(s)=arctank2, τ(s)=δ′(s) and κ(s)= k2+k2. k1 1 2 Bishop curvatures are defined by p k = κ(s)cosδ(s), 1 k = κ(s)sinδ(s). 2 The relation matrix may be expressed as t=t, n=cosδ(s)m +sinδ(s)m , 1 2 b= sinδ(s)m +cosδ(s)m . 1 2 − On the other hand, using above equation we have t=t, m =cosδ(s)n sinδ(s)b 1 − m =sinδ(s)n+cosδ(s)b. 2 With respect to the orthonormal basis e ,e ,e we can write { 1 2 3} t = t1e +t2e +t3e , 1 2 3 m = m1e +m2e +m3e , (3.5) 1 1 1 1 2 1 3 m = m1e +m2e +m3e . 2 2 1 2 2 2 3 Theorem 3.1 γ :I Sol3 is a biharmonic curve according to Bishop frame if and only if −→ k2+k2 = constant=0, 1 2 6 k′′ k2+k2 k = k 2m3 1 2k m3m3, (3.6) 1 − 1 2 1 − 1 2− − 2 1 2 k2′′−(cid:2)k12+k22(cid:3)k2 = 2k1m(cid:2)31m32−k2(cid:3) 2m31−1 . (cid:2) (cid:3) (cid:2) (cid:3) 36 TalatKO¨RPINARandEssinTURHAN Theorem 3.2 Let γ :I Sol3 be a unit speed non-geodesic biharmonic new type b slant −→ − helix with constant slope. Then, the position vector of γ is cos γ(s) = [ M [ cos[ s+ ]+sin sin[ s+ ]]+ e−sinMs+S3]e 2+sin2 −S1 S1 S2 M S1 S2 S4 1 S1 M cos +[ M [ sin cos[ s+ ]+ sin[ s+ ]]+ esinMs−S3]e 2+sin2 − M S1 S2 S1 S1 S2 S5 2 S1 M +[ sin s+ ]e , (3.7) 3 3 − M S where , , , , are constants of integration, [8]. 1 2 3 4 5 S S S S S We can use Mathematica in Theorem 3.4, yields Fig.1 §4. b−Smarandache m1m2 Curves ofBiharmonicNewType b−SlantHelicesinSol3 To separate a Smarandache m1m2 curve according to Bishop frame from that of Frenet- Serret frame, in the rest of the paper, we shall use notation for the curve defined above as b−Smarandache m1m2 curve. Definition 4.1 Let γ :I Sol3 be a unit speed non-geodesic biharmonic new type b slant −→ − helix and {t,m1,m2} be its moving Bishop frame. b−Smarandache m1m2 curves are defined by 1 γm1m2 = k2+k2 (m1+m2). (4.1) 1 2 p Theorem 4.2 Let γ :I Sol3 be a unit speed non-geodesic biharmonic new type b slant −→ − helix. Then, the equation of b−Smarandache m1m2 curves of biharmonic new type b−slant b−Smarandachem1m2CurvesofBiharmonticNewTypeb−SlantHelices 37 helix is given by 1 γm1m2(s) = k2+k2[sinMsin[S1s+S2]+cos[S1s+S2]]e1 1 2 1 +p [sin cos[ s+ ] sin[ s+ ]]e (4.2) 1 2 1 2 2 k2+k2 M S S − S S 1 2 1 +p [cos ]e , 3 k2+k2 M 1 2 p where , are constants of integration. 1 2 C C Proof Assume that γ is a non geodesic biharmonic new type b slant helix according to − Bishop frame. From Theorem 3.2, we obtain m =sin sin[ s+ ]e +sin cos[ s+ ]e +cos e , (4.3) 2 1 2 1 1 2 2 3 M S S M S S M where , R. 1 2 S S ∈ Using Bishop frame, we have m =cos[ s+ ]e sin[ s+ ]e . (4.4) 1 1 2 1 1 2 2 S S − S S Substituting (4.3) and (4.4) in (4.1) we have (4.2), which completes the proof. (cid:3) In terms of Eqs. (2.1) and (4.2), we may give: Corollary 4.3 Let γ :I Sol3 be a unit speed non-geodesic biharmonic new type b slant −→ − helix. Then, the parametric equations of b−Smarandache tm1m2 curves of biharmonic new type b slant helix are given by − − 1 [cosM] e √k12+k22 xtm1m2(s) = k2+k2 [sinMsin[S1s+S2]+cos[S1s+S2]], 1 2 1 [cosM] e√pk12+k22 ytm1m2(s) = k2+k2 [sinMcos[S1s+S2]−sin[S1s+S2]], (4.5) 1 2 1 ztm1m2(s) = kp2+k2[cosM], 1 2 p where , are constants of integration. 1 2 S S Proof Substituting (2.1) to (4.2), we have (4.5) as desired. (cid:3) We may use Mathematica in Corollary 4.3, yields 38 TalatKO¨RPINARandEssinTURHAN Fig.2 References [1] L.R.Bishop, There is more than one way to frame a curve, Amer. Math. Monthly, 82 (3) (1975) 246-251. [2] R.M.C.Bodduluri, B.Ravani, Geometric design and fabrication of developable surfaces, ASME Adv. Design Autom., 2 (1992), 243-250. [3] F.Dillen, W.Kuhnel,Ruled WeingartensurfacesinMinkowski3-space,Manuscripta Math. 98 (1999), 307–320. [4] I.Dimitric, Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), 53–65. [5] J.Eells and L.Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1–68. [6] J.Eells and J.H.Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. [7] G.Y.Jiang,2-harmonicisometricimmersionsbetweenRiemannianmanifolds,ChineseAnn. Math. Ser. A 7(2) (1986), 130–144. [8] T.K¨orpınarandE.Turhan,Biharmonicnewtype b-slanthelicesaccordingtoBishopframe in the sol space, (submitted). [9] M.A.Lancret, Memoire sur les courbes ‘a double courbure, Memoires presentes alInstitut 1 (1806), 416-454. [10] E.LoubeauandS.Montaldo,Biminimalimmersionsinspaceforms,preprint,2004,math.DG /0405320 v1. [11] Y.OuandZ.Wang,LinearBiharmonicMapsintoSol,NilandHeisenbergSpaces,Mediterr. J. Math. 5 (2008), 379–394 [12] S.Rahmani, Metriqus de Lorentz sur les groupesde Lie unimodulaires,de dimension trois, Journal of Geometry and Physics, 9 (1992), 295-302. [13] D.J.Struik, Lectures on Classical Differential Geometry, Dover, New-York, 1988. b−Smarandachem1m2CurvesofBiharmonticNewTypeb−SlantHelices 39 [14] E.TurhanandT.K¨orpınar,OnCharacterizationOfTimelikeHorizontalBiharmonicCurves In The Lorentzian Heisenberg Group Heis3, Zeitschrift fu¨r Naturforschung A- A Journal of Physical Sciences, 65a (2010), 641-648. [15] E.Turhan and T.K¨orpınar, Parametric equations of general helices in the sol space Sol3, Bol. Soc. Paran. Mat. 31 (1) (2013), 99–104.