ebook img

BRST Symmetry and De Rham Cohomology PDF

205 Pages·2015·1.126 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview BRST Symmetry and De Rham Cohomology

Soon-Tae Hong BRST Symmetry and de Rham Cohomology BRST Symmetry and de Rham Cohomology Soon-Tae Hong BRST Symmetry and de Rham Cohomology 123 Soon-TaeHong ScienceEducation EwhaWomansUniversity Seoul,RepublicofKorea ISBN978-94-017-9749-8 ISBN978-94-017-9750-4 (eBook) DOI10.1007/978-94-017-9750-4 LibraryofCongressControlNumber:2015935190 SpringerDordrechtHeidelbergNewYorkLondon ©SpringerScience+BusinessMediaDordrecht2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerScience+Business MediaB.V.DordrechtispartofSpringerScience+Business Media(www. springer.com) Preface Since Dirac proposed quantization for systems with constraints, there have been considerableprogressesinHamiltonianquantizationmethodassociatedwithBecci- Rouet-Stora-Tyutin(BRST)charge.EspeciallyintopologicalsolitonssuchasO(3) nonlinearsigmamodel,CP(N)model,Skyrmionmodelandchiralbagmodel,there appeargeometricalconstraintswhichcanberigorouslytreatedintheHamiltonian quantizationschemebyexploitingStückelbergfieldsin extendedphase spaces.In this book,by includingghostand antighostfields in these extendedphase spaces, we constructthe BRST invarianteffectiveLagrangianforthese solitonsandsome othermodelsdescribedbelow. Moreover, exploiting the Hamiltonian quantization method, there have been attempts to quantize the geometrically constrained systems such as free particles on a sphere and on a torus to investigate the BRST symmetries involved in the systems. Both symplectic embedding and Hamilton-Jacobi quantization schemes have been also developed to analyze Proca model, self-dual master Lagrangian and nonholonomic system. The BRST symmetries in SU(3) linear sigma model, fractional spin statistics of CP(1) model with Hopf term and gauge symmetry enhancementinenlargedCP(N)modelcoupledwithU(2)Chern-Simonstermhave beenstudiedintheHamiltonianquantizationmethod. Phenomenologically, flavor symmetry breaking effect on SU(3) Skyrmion has beeninvestigatedtoyieldrelevantmassspectraincludingWeylorderingcorrections associatedwiththeconstraints.StrangenessinSU(3)chiralbagmodel,whichisa hybridoftheSkyrmionandMITbagmodel,hasbeenevaluatedintermsofbaryon octet and decuplet magnetic moments to predict data of SAMPLE and HAPPEX experimentsonprotonstrangeformfactor.Mostofphysicalsystemsaresupposedto possessconstraintsandthussignificanceoftheHamiltonianquantizationforthese systemsisbeingemphasizedincreasingly. Finally, in this book, BRST charge, de Rham cohomology and closed algebra ofquantumfieldoperatorshavebeeninvestigatedin’tHooft-Polyakovmonopole, which is classified as second class system in the Dirac quantization formalism. To this end, the first class Hamiltonian of the monopole has been constructed to define a monopole charge in U(1) subgroup of U(2) gauge group in the first v vi Preface classconfigurationandtoinvestigateBogomol’nyiboundonextendedinternaltwo- sphere. The explicit form of the BRST invariant Hamiltonian has been studied to discussgeometricaspectsofthecorrespondingdeRhamcohomology. Seoul,RepublicofKorea Soon-TaeHong November2014 Acknowledgments The author would like to thank G.E. Brown, Y.M. Cho, D.K. Hong, W.T. Kim, Y.W. Kim, K. Kubodera, B.H. Lee, J. Lee, S.H. Lee, T.H. Lee, C.M. Maekawa, R.D. McKeown,D.P. Min, F. Myhrer,A.J. Niemi, P. Oh, B.Y. Park, Y.J. Park, M. Ramsey-Musolf,M.RhoandK.D.Rotheforhelpfuldiscussions. vii Contents 1 Introduction .................................................................. 1 2 HamiltonianQuantizationwithConstraints.............................. 5 2.1 HamiltonianQuantizationofFreeParticleonSphere................. 5 2.2 HamiltonianQuantizationofFreeParticleonTorus.................. 11 3 BRSTSymmetryinConstrainedSystems................................. 15 3.1 BRSTSymmetryinFreeParticleSystemonSphere.................. 15 3.2 BRSTSymmetryinFreeParticleSystemonTorus................... 19 4 SymplecticEmbeddingandHamilton-JacobiQuantization............ 25 4.1 SymplecticEmbeddingofFreeParticleonTorus..................... 25 4.2 Hamilton-JacobiQuantizationofNonholonomicSystem............. 28 4.3 SymplecticEmbeddingandHamilton-JacobiAnalysisof ProcaModel............................................................. 34 5 HamiltonianQuantizationandBRSTSymmetryofSolitonModels... 51 5.1 HamiltonianandSemi-classicalQuantizationofO(3) NonlinearSigmaModel ................................................ 51 5.2 SchrödingerRepresentationofO(3)NonlinearSigmaModel........ 61 5.3 BRSTSymmetryinSU(3)LinearSigmaModel...................... 64 5.4 BRSTExtensionofFaddeevModel.................................... 75 6 Hamiltonian Quantization and BRST Symmetry of SkyrmionModels ............................................................ 81 6.1 HamiltonianQuantizationofSU(2)Skyrmion ........................ 82 6.2 BRSTSymmetryofSU(2)Skyrmion.................................. 90 6.3 HamiltonianQuantizationofSU(3)Skyrmion ........................ 94 6.4 FlavorSymmetryBreakingEffectonSU(3)Skyrmion............... 103 7 HamiltonianStructureofOtherModels .................................. 111 7.1 BosonizationofQCDatHighDensity................................. 111 7.2 GaugeSymmetryEnhancementofEnlargedCP(N)Model .......... 122 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.