ebook img

Brownian motion : an introduction to stochastic processes PDF

395 Pages·2012·2.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Brownian motion : an introduction to stochastic processes

DeGruyterGraduate Schilling/Partzsch (cid:2) BrownianMotion René L. Schilling Lothar Partzsch Brownian Motion An Introduction to Stochastic Processes With a Chapter on Simulation by Björn Böttcher De Gruyter MathematicsSubjectClassification2010:Primary:60-01,60J65;Secondary:60H05,60H10, 60J35,60G46,60J60,60J25. ISBN978-3-11-027889-7 e-ISBN978-3-11-027898-9 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailedbibliographicdataareavailableintheinternetathttp://dnb.dnb.de. © 2012WalterdeGruyterGmbH&Co.KG,Berlin/Boston Typesetting:PTP-BerlinProtago-TEX-ProductionGmbH,www.ptp-berlin.eu Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface Brownianmotionisarguablythesinglemostimportantstochasticprocess.Historically itwasthefirststochasticprocessincontinuoustimeandwithacontinuousstatespace, andthusitinfluencedthestudyofGaussianprocesses,martingales,Markovprocesses, diffusionsandrandomfractals.Itscentralpositionwithinmathematicsismatchedby numerousapplicationsinscience,engineeringandmathematicalfinance. ThepresentbookgrewoutofseveralcourseswhichwetaughtattheUniversityof MarburgandTUDresden,anditdrawsonthelecturenotes[141]byoneofus.Many studentsareinterestedinapplicationsofprobabilitytheoryanditisimportanttoteach Brownian motion and stochastic calculus at an early stage of the curriculum. Such a courseisverylikelythefirstencounterwithstochasticprocessesincontinuoustime, followingdirectlyonanintroductorycourseonrigorous(i.e.measure-theoretic)prob- abilitytheory.Typically,studentswouldbefamiliarwiththeclassicallimittheorems ofprobabilitytheoryandbasicdiscrete-timemartingales,asitistreated,forexample, byJacod&ProtterProbabilityEssentials[88],WilliamsProbabilitywithMartingales [189],orinthemorevoluminoustextbooksbyBillingsley[11]andDurrett[50]. Generaltextbooksonprobabilitytheorycoverhowever,ifatall,Brownianmotion only briefly. On the other hand, there is a quite substantial gap to more specialized texts on Brownian motion which is notso easy to overcome for the novice. Ouraim wastowriteabookwhichcanbeusedintheclassroomasanintroductiontoBrownian motionandstochasticcalculus,andasafirstcourseincontinuous-timeandcontinuous- stateMarkovprocesses.Wealsowantedtohaveatextwhichwouldbebothareadily accessiblemathematicalback-upforcontemporaryapplications(suchasmathematical finance)andafoundationtogeteasyaccesstoadvancedmonographs,e.g.Karatzas& Shreve[99],Revuz&Yor[156]orRogers&Williams[161](forstochasticcalculus), Marcus&Rosen[129](forGaussianprocesses),Peres&Mörters[133](forrandom fractals), Chung [23] or Port & Stone [149] (for potential theory) or Blumenthal & Getoor[13](forMarkovprocesses)tonamebutafew. Thingsthereadersareexpectedtoknow:Ourpresentationisbasicallyself-con- tained,startingfrom‘scratch’withcontinuous-timestochasticprocesses.Wedo,how- ever,assumesomebasicmeasuretheory(asin[169])andafirstcourseonprobability theoryanddiscrete-timemartingales(asin[88]or[189]).Some‘remedial’materialis collectedintheappendix,butthisisreallyintendedasaback-up. Howtoreadthis book:Ofcourse,nothingpreventsyoufromreadingitlinearly. But there is more material here than one could cover in a one-semester course. De- vi Preface pendingonyourneedsandlikings,thereareatleastthreepossibleselections:BMand Itôcalculus,BManditssamplepathsandBMasaMarkovprocess.Thediagramon pagexiwillgiveyousomeideashowthingsdependoneachotherandhowtoconstruct yourown‘Browniansamplepath’throughthisbook. Whenever specialattentionisneededandtopointouttraps&pitfalls,wehaveused the signinthemargin.Alsointhemargin,therearecross-referencestoexercisesat Ex.N.N. theendofeachchapterwhichwethinkfit(andaresometimesneeded)atthatpoint.1 Theyarenotjustdrillproblemsbutcontainvariants,excursionsfromandextensions ofthematerialpresentedinthetext.Theproofsofthecorematerialdonotseriously dependonanyoftheproblems. Writing an introductory text also meant that we had to omit many beautiful top- ics. Often we had to stop at a point where we, hopefully, got you really interested... Therefore, we close every chapter with a brief outlook on possible texts for further reading. Many people contributed towards the completion of this project: First of all the studentswhoattendedourcoursesandhelped–oftenunwittingly–toshapethepre- sentationofthematerial.WeprofitedalotfromcommentsbyNielsJacob(Swansea) andPankiKim(SeoulNationalUniversity)whousedanearlydraftofthemanuscript inoneofhiscourses.SpecialthanksgotoourcolleaguesandstudentsBjörnBöttcher, KatharinaFischer,JulianHollender,FelixLindnerandMichaelSchwarzenbergerwho readsubstantialpartsofthetext,oftenseveraltimesandatvariousstages.Theyfound countless misprints, inconsistencies and errors which we would never have spotted. Björn helped out with many illustrations and, more importantly, contributed Chap- ter20onsimulation.FinallywethankourcolleaguesandfriendsatTUDresdenand ourfamilieswhocontributedtothisworkinmanyuncreditedways.Wehopethatthey approveoftheresult. Dresden,February2012 RenéL.Schilling LotharPartzsch 1 Forthereaders’conveniencethereisawebpagewhereadditionalmaterialandsolutionsareavail- able.TheURLishttp://www.motapa.de/brownian_motion/index.html Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Dependencechart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Indexofnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 RobertBrown’snewthing. . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 BrownianmotionasaGaussianprocess . . . . . . . . . . . . . . . . . . 7 2.1 Thefinitedimensionaldistributions . . . . . . . . . . . . . . . . . . 7 2.2 InvariancepropertiesofBrownianmotion . . . . . . . . . . . . . . . 12 2.3 BrownianMotioninRd . . . . . . . . . . . . . . . . . . . . . . . . 15 3 ConstructionsofBrownianmotion . . . . . . . . . . . . . . . . . . . . . 21 3.1 TheLévy–Ciesielskiconstruction . . . . . . . . . . . . . . . . . . . 21 3.2 Lévy’soriginalargument . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Wiener’sconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Donsker’sconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 TheBachelier–Kolmogorovpointofview . . . . . . . . . . . . . . . 37 4 Thecanonicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 Wienermeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Kolmogorov’sconstruction . . . . . . . . . . . . . . . . . . . . . . . 44 5 Brownianmotionasamartingale . . . . . . . . . . . . . . . . . . . . . 48 5.1 Some‘Brownian’martingales . . . . . . . . . . . . . . . . . . . . . 48 5.2 Stoppingandsampling . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 TheexponentialWaldidentity . . . . . . . . . . . . . . . . . . . . . 57 6 BrownianmotionasaMarkovprocess . . . . . . . . . . . . . . . . . . . 62 6.1 TheMarkovproperty . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2 ThestrongMarkovproperty . . . . . . . . . . . . . . . . . . . . . . 65 6.3 DesiréAndré’sreflectionprinciple . . . . . . . . . . . . . . . . . . . 68 6.4 Transienceandrecurrence . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Lévy’striplelaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6 Anarc-sinelaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.7 Somemeasurabilityissues . . . . . . . . . . . . . . . . . . . . . . . 80 viii Contents 7 Brownianmotionandtransitionsemigroups . . . . . . . . . . . . . . . 86 7.1 Thesemigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2 Thegenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3 Theresolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.4 TheHille-Yosidatheoremandpositivity . . . . . . . . . . . . . . . . 100 7.5 Dynkin’scharacteristicoperator . . . . . . . . . . . . . . . . . . . . 103 8 ThePDEconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.1 Theheatequation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.2 Theinhomogeneousinitialvalueproblem . . . . . . . . . . . . . . . 117 8.3 TheFeynman–Kacformula . . . . . . . . . . . . . . . . . . . . . . . 119 8.4 TheDirichletproblem. . . . . . . . . . . . . . . . . . . . . . . . . . 123 9 ThevariationofBrownianpaths . . . . . . . . . . . . . . . . . . . . . . 137 9.1 Thequadraticvariation . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.2 Almostsureconvergenceofthevariationsums . . . . . . . . . . . . 140 9.3 Almostsuredivergenceofthevariationsums . . . . . . . . . . . . . 143 9.4 Lévy’scharacterizationofBrownianmotion . . . . . . . . . . . . . . 146 10 RegularityofBrownianpaths . . . . . . . . . . . . . . . . . . . . . . . . 152 10.1 Höldercontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.2 Non-differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.3 Lévy’smodulusofcontinuity . . . . . . . . . . . . . . . . . . . . . . 157 11 ThegrowthofBrownianpaths . . . . . . . . . . . . . . . . . . . . . . . 164 11.1 Khintchine’sLawoftheIteratedLogarithm . . . . . . . . . . . . . . 164 11.2 Chung’s‘other’LawoftheIteratedLogarithm . . . . . . . . . . . . 168 12 Strassen’sFunctionalLawoftheIteratedLogarithm . . . . . . . . . . 173 12.1 TheCameron–Martinformula . . . . . . . . . . . . . . . . . . . . . 174 12.2 Largedeviations(Schilder’stheorem) . . . . . . . . . . . . . . . . . 181 12.3 TheproofofStrassen’stheorem . . . . . . . . . . . . . . . . . . . . 186 13 Skorokhodrepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . 193 14 Stochasticintegrals:L2-Theory . . . . . . . . . . . . . . . . . . . . . . 203 14.1 Discretestochasticintegrals . . . . . . . . . . . . . . . . . . . . . . 203 14.2 Simpleintegrands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 14.3 ExtensionofthestochasticintegraltoL2 . . . . . . . . . . . . . . . 211 T 14.4 EvaluatingItôintegrals . . . . . . . . . . . . . . . . . . . . . . . . . 215 14.5 WhatistheclosureofE ? . . . . . . . . . . . . . . . . . . . . . . . 219 T 14.6 Thestochasticintegralformartingales . . . . . . . . . . . . . . . . . 222 Contents ix 15 Stochasticintegrals:beyondL2 . . . . . . . . . . . . . . . . . . . . . . 227 T 16 Itô’sformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.1 Itôprocessesandstochasticdifferentials . . . . . . . . . . . . . . . . 233 16.2 TheheuristicsbehindItô’sformula . . . . . . . . . . . . . . . . . . . 235 16.3 ProofofItô’sformula(Theorem16.1) . . . . . . . . . . . . . . . . . 236 16.4 Itô’sformulaforstochasticdifferentials . . . . . . . . . . . . . . . . 239 16.5 Itô’sformulaforBrownianmotioninRd . . . . . . . . . . . . . . . 242 16.6 Tanaka’sformulaandlocaltime . . . . . . . . . . . . . . . . . . . . 243 17 ApplicationsofItô’sformula . . . . . . . . . . . . . . . . . . . . . . . . 248 17.1 Doléans–Dadeexponentials. . . . . . . . . . . . . . . . . . . . . . . 248 17.2 Lévy’scharacterizationofBrownianmotion . . . . . . . . . . . . . . 253 17.3 Girsanov’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 17.4 Martingalerepresentation–1 . . . . . . . . . . . . . . . . . . . . . . 258 17.5 Martingalerepresentation–2 . . . . . . . . . . . . . . . . . . . . . . 261 17.6 Martingalesastime-changedBrownianmotion . . . . . . . . . . . . 263 17.7 Burkholder–Davis–Gundyinequalities . . . . . . . . . . . . . . . . . 266 18 Stochasticdifferentialequations . . . . . . . . . . . . . . . . . . . . . . 272 18.1 TheheuristicsofSDEs . . . . . . . . . . . . . . . . . . . . . . . . . 273 18.2 Someexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 18.3 Existenceanduniquenessofsolutions . . . . . . . . . . . . . . . . . 280 18.4 SolutionsasMarkovprocesses . . . . . . . . . . . . . . . . . . . . . 285 18.5 Localizationprocedures . . . . . . . . . . . . . . . . . . . . . . . . . 286 18.6 Dependenceontheinitialvalues . . . . . . . . . . . . . . . . . . . . 289 19 Ondiffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 19.1 Kolmogorov’stheory . . . . . . . . . . . . . . . . . . . . . . . . . . 300 19.2 Itô’stheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 20 SimulationofBrownianmotionbyBjörnBöttcher . . . . . . . . . . . . . 312 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 20.2 Normaldistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 20.3 Brownianmotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 20.4 MultivariateBrownianmotion . . . . . . . . . . . . . . . . . . . . . 321 20.5 Stochasticdifferentialequations . . . . . . . . . . . . . . . . . . . . 323 20.6 MonteCarlomethod . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 A.1 Kolmogorov’sexistencetheorem . . . . . . . . . . . . . . . . . . . . 329 A.2 Apropertyofconditionalexpectations . . . . . . . . . . . . . . . . . 333

Description:
Stochastic processes occur in a large number of fields in sciences and engineering, so they need to be understood by applied mathematicians, engineers and scientists alike. This work is ideal for a first course introducing the reader gently to the subject matter of stochastic processes. It uses Brow
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.