DeGruyterGraduate Schilling/Partzsch (cid:2) BrownianMotion René L. Schilling Lothar Partzsch Brownian Motion An Introduction to Stochastic Processes With a Chapter on Simulation by Björn Böttcher De Gruyter MathematicsSubjectClassification2010:Primary:60-01,60J65;Secondary:60H05,60H10, 60J35,60G46,60J60,60J25. ISBN978-3-11-027889-7 e-ISBN978-3-11-027898-9 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailedbibliographicdataareavailableintheinternetathttp://dnb.dnb.de. © 2012WalterdeGruyterGmbH&Co.KG,Berlin/Boston Typesetting:PTP-BerlinProtago-TEX-ProductionGmbH,www.ptp-berlin.eu Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface Brownianmotionisarguablythesinglemostimportantstochasticprocess.Historically itwasthefirststochasticprocessincontinuoustimeandwithacontinuousstatespace, andthusitinfluencedthestudyofGaussianprocesses,martingales,Markovprocesses, diffusionsandrandomfractals.Itscentralpositionwithinmathematicsismatchedby numerousapplicationsinscience,engineeringandmathematicalfinance. ThepresentbookgrewoutofseveralcourseswhichwetaughtattheUniversityof MarburgandTUDresden,anditdrawsonthelecturenotes[141]byoneofus.Many studentsareinterestedinapplicationsofprobabilitytheoryanditisimportanttoteach Brownian motion and stochastic calculus at an early stage of the curriculum. Such a courseisverylikelythefirstencounterwithstochasticprocessesincontinuoustime, followingdirectlyonanintroductorycourseonrigorous(i.e.measure-theoretic)prob- abilitytheory.Typically,studentswouldbefamiliarwiththeclassicallimittheorems ofprobabilitytheoryandbasicdiscrete-timemartingales,asitistreated,forexample, byJacod&ProtterProbabilityEssentials[88],WilliamsProbabilitywithMartingales [189],orinthemorevoluminoustextbooksbyBillingsley[11]andDurrett[50]. Generaltextbooksonprobabilitytheorycoverhowever,ifatall,Brownianmotion only briefly. On the other hand, there is a quite substantial gap to more specialized texts on Brownian motion which is notso easy to overcome for the novice. Ouraim wastowriteabookwhichcanbeusedintheclassroomasanintroductiontoBrownian motionandstochasticcalculus,andasafirstcourseincontinuous-timeandcontinuous- stateMarkovprocesses.Wealsowantedtohaveatextwhichwouldbebothareadily accessiblemathematicalback-upforcontemporaryapplications(suchasmathematical finance)andafoundationtogeteasyaccesstoadvancedmonographs,e.g.Karatzas& Shreve[99],Revuz&Yor[156]orRogers&Williams[161](forstochasticcalculus), Marcus&Rosen[129](forGaussianprocesses),Peres&Mörters[133](forrandom fractals), Chung [23] or Port & Stone [149] (for potential theory) or Blumenthal & Getoor[13](forMarkovprocesses)tonamebutafew. Thingsthereadersareexpectedtoknow:Ourpresentationisbasicallyself-con- tained,startingfrom‘scratch’withcontinuous-timestochasticprocesses.Wedo,how- ever,assumesomebasicmeasuretheory(asin[169])andafirstcourseonprobability theoryanddiscrete-timemartingales(asin[88]or[189]).Some‘remedial’materialis collectedintheappendix,butthisisreallyintendedasaback-up. Howtoreadthis book:Ofcourse,nothingpreventsyoufromreadingitlinearly. But there is more material here than one could cover in a one-semester course. De- vi Preface pendingonyourneedsandlikings,thereareatleastthreepossibleselections:BMand Itôcalculus,BManditssamplepathsandBMasaMarkovprocess.Thediagramon pagexiwillgiveyousomeideashowthingsdependoneachotherandhowtoconstruct yourown‘Browniansamplepath’throughthisbook. Whenever specialattentionisneededandtopointouttraps&pitfalls,wehaveused the signinthemargin.Alsointhemargin,therearecross-referencestoexercisesat Ex.N.N. theendofeachchapterwhichwethinkfit(andaresometimesneeded)atthatpoint.1 Theyarenotjustdrillproblemsbutcontainvariants,excursionsfromandextensions ofthematerialpresentedinthetext.Theproofsofthecorematerialdonotseriously dependonanyoftheproblems. Writing an introductory text also meant that we had to omit many beautiful top- ics. Often we had to stop at a point where we, hopefully, got you really interested... Therefore, we close every chapter with a brief outlook on possible texts for further reading. Many people contributed towards the completion of this project: First of all the studentswhoattendedourcoursesandhelped–oftenunwittingly–toshapethepre- sentationofthematerial.WeprofitedalotfromcommentsbyNielsJacob(Swansea) andPankiKim(SeoulNationalUniversity)whousedanearlydraftofthemanuscript inoneofhiscourses.SpecialthanksgotoourcolleaguesandstudentsBjörnBöttcher, KatharinaFischer,JulianHollender,FelixLindnerandMichaelSchwarzenbergerwho readsubstantialpartsofthetext,oftenseveraltimesandatvariousstages.Theyfound countless misprints, inconsistencies and errors which we would never have spotted. Björn helped out with many illustrations and, more importantly, contributed Chap- ter20onsimulation.FinallywethankourcolleaguesandfriendsatTUDresdenand ourfamilieswhocontributedtothisworkinmanyuncreditedways.Wehopethatthey approveoftheresult. Dresden,February2012 RenéL.Schilling LotharPartzsch 1 Forthereaders’conveniencethereisawebpagewhereadditionalmaterialandsolutionsareavail- able.TheURLishttp://www.motapa.de/brownian_motion/index.html Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Dependencechart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Indexofnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 RobertBrown’snewthing. . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 BrownianmotionasaGaussianprocess . . . . . . . . . . . . . . . . . . 7 2.1 Thefinitedimensionaldistributions . . . . . . . . . . . . . . . . . . 7 2.2 InvariancepropertiesofBrownianmotion . . . . . . . . . . . . . . . 12 2.3 BrownianMotioninRd . . . . . . . . . . . . . . . . . . . . . . . . 15 3 ConstructionsofBrownianmotion . . . . . . . . . . . . . . . . . . . . . 21 3.1 TheLévy–Ciesielskiconstruction . . . . . . . . . . . . . . . . . . . 21 3.2 Lévy’soriginalargument . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Wiener’sconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Donsker’sconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 TheBachelier–Kolmogorovpointofview . . . . . . . . . . . . . . . 37 4 Thecanonicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 Wienermeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Kolmogorov’sconstruction . . . . . . . . . . . . . . . . . . . . . . . 44 5 Brownianmotionasamartingale . . . . . . . . . . . . . . . . . . . . . 48 5.1 Some‘Brownian’martingales . . . . . . . . . . . . . . . . . . . . . 48 5.2 Stoppingandsampling . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 TheexponentialWaldidentity . . . . . . . . . . . . . . . . . . . . . 57 6 BrownianmotionasaMarkovprocess . . . . . . . . . . . . . . . . . . . 62 6.1 TheMarkovproperty . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2 ThestrongMarkovproperty . . . . . . . . . . . . . . . . . . . . . . 65 6.3 DesiréAndré’sreflectionprinciple . . . . . . . . . . . . . . . . . . . 68 6.4 Transienceandrecurrence . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Lévy’striplelaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6 Anarc-sinelaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.7 Somemeasurabilityissues . . . . . . . . . . . . . . . . . . . . . . . 80 viii Contents 7 Brownianmotionandtransitionsemigroups . . . . . . . . . . . . . . . 86 7.1 Thesemigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2 Thegenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3 Theresolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.4 TheHille-Yosidatheoremandpositivity . . . . . . . . . . . . . . . . 100 7.5 Dynkin’scharacteristicoperator . . . . . . . . . . . . . . . . . . . . 103 8 ThePDEconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.1 Theheatequation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.2 Theinhomogeneousinitialvalueproblem . . . . . . . . . . . . . . . 117 8.3 TheFeynman–Kacformula . . . . . . . . . . . . . . . . . . . . . . . 119 8.4 TheDirichletproblem. . . . . . . . . . . . . . . . . . . . . . . . . . 123 9 ThevariationofBrownianpaths . . . . . . . . . . . . . . . . . . . . . . 137 9.1 Thequadraticvariation . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.2 Almostsureconvergenceofthevariationsums . . . . . . . . . . . . 140 9.3 Almostsuredivergenceofthevariationsums . . . . . . . . . . . . . 143 9.4 Lévy’scharacterizationofBrownianmotion . . . . . . . . . . . . . . 146 10 RegularityofBrownianpaths . . . . . . . . . . . . . . . . . . . . . . . . 152 10.1 Höldercontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.2 Non-differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.3 Lévy’smodulusofcontinuity . . . . . . . . . . . . . . . . . . . . . . 157 11 ThegrowthofBrownianpaths . . . . . . . . . . . . . . . . . . . . . . . 164 11.1 Khintchine’sLawoftheIteratedLogarithm . . . . . . . . . . . . . . 164 11.2 Chung’s‘other’LawoftheIteratedLogarithm . . . . . . . . . . . . 168 12 Strassen’sFunctionalLawoftheIteratedLogarithm . . . . . . . . . . 173 12.1 TheCameron–Martinformula . . . . . . . . . . . . . . . . . . . . . 174 12.2 Largedeviations(Schilder’stheorem) . . . . . . . . . . . . . . . . . 181 12.3 TheproofofStrassen’stheorem . . . . . . . . . . . . . . . . . . . . 186 13 Skorokhodrepresentation . . . . . . . . . . . . . . . . . . . . . . . . . . 193 14 Stochasticintegrals:L2-Theory . . . . . . . . . . . . . . . . . . . . . . 203 14.1 Discretestochasticintegrals . . . . . . . . . . . . . . . . . . . . . . 203 14.2 Simpleintegrands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 14.3 ExtensionofthestochasticintegraltoL2 . . . . . . . . . . . . . . . 211 T 14.4 EvaluatingItôintegrals . . . . . . . . . . . . . . . . . . . . . . . . . 215 14.5 WhatistheclosureofE ? . . . . . . . . . . . . . . . . . . . . . . . 219 T 14.6 Thestochasticintegralformartingales . . . . . . . . . . . . . . . . . 222 Contents ix 15 Stochasticintegrals:beyondL2 . . . . . . . . . . . . . . . . . . . . . . 227 T 16 Itô’sformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.1 Itôprocessesandstochasticdifferentials . . . . . . . . . . . . . . . . 233 16.2 TheheuristicsbehindItô’sformula . . . . . . . . . . . . . . . . . . . 235 16.3 ProofofItô’sformula(Theorem16.1) . . . . . . . . . . . . . . . . . 236 16.4 Itô’sformulaforstochasticdifferentials . . . . . . . . . . . . . . . . 239 16.5 Itô’sformulaforBrownianmotioninRd . . . . . . . . . . . . . . . 242 16.6 Tanaka’sformulaandlocaltime . . . . . . . . . . . . . . . . . . . . 243 17 ApplicationsofItô’sformula . . . . . . . . . . . . . . . . . . . . . . . . 248 17.1 Doléans–Dadeexponentials. . . . . . . . . . . . . . . . . . . . . . . 248 17.2 Lévy’scharacterizationofBrownianmotion . . . . . . . . . . . . . . 253 17.3 Girsanov’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 17.4 Martingalerepresentation–1 . . . . . . . . . . . . . . . . . . . . . . 258 17.5 Martingalerepresentation–2 . . . . . . . . . . . . . . . . . . . . . . 261 17.6 Martingalesastime-changedBrownianmotion . . . . . . . . . . . . 263 17.7 Burkholder–Davis–Gundyinequalities . . . . . . . . . . . . . . . . . 266 18 Stochasticdifferentialequations . . . . . . . . . . . . . . . . . . . . . . 272 18.1 TheheuristicsofSDEs . . . . . . . . . . . . . . . . . . . . . . . . . 273 18.2 Someexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 18.3 Existenceanduniquenessofsolutions . . . . . . . . . . . . . . . . . 280 18.4 SolutionsasMarkovprocesses . . . . . . . . . . . . . . . . . . . . . 285 18.5 Localizationprocedures . . . . . . . . . . . . . . . . . . . . . . . . . 286 18.6 Dependenceontheinitialvalues . . . . . . . . . . . . . . . . . . . . 289 19 Ondiffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 19.1 Kolmogorov’stheory . . . . . . . . . . . . . . . . . . . . . . . . . . 300 19.2 Itô’stheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 20 SimulationofBrownianmotionbyBjörnBöttcher . . . . . . . . . . . . . 312 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 20.2 Normaldistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 20.3 Brownianmotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 20.4 MultivariateBrownianmotion . . . . . . . . . . . . . . . . . . . . . 321 20.5 Stochasticdifferentialequations . . . . . . . . . . . . . . . . . . . . 323 20.6 MonteCarlomethod . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 A.1 Kolmogorov’sexistencetheorem . . . . . . . . . . . . . . . . . . . . 329 A.2 Apropertyofconditionalexpectations . . . . . . . . . . . . . . . . . 333
Description: