B r o a d b a n d R F a n d M i c r o w a v e A m p l i f i e r s © 2016 by Taylor & Francis Group, LLC B r o a d b a n d R F a n d M i c r o w a v e A m p l i f i e r s Andrei Grebennikov (cid:127) Narendra Kumar Binboga S. Yarman Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2016 by Taylor & Francis Group, LLC MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20150824 International Standard Book Number-13: 978-1-4665-5739-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2016 by Taylor & Francis Group, LLC Contents Preface ..............................................................................................................................................xi Acknowledgments ........................................................................................................................xv Introduction ................................................................................................................................xvii Authors .......................................................................................................................................xxiii 1 Two-Port Network Parameters .............................................................................................1 1.1 Traditional Network Parameters ................................................................................1 1.2 Scattering Parameters ...................................................................................................5 1.3 Conversions between Two-Port Parameters .............................................................8 1.4 Interconnections of Two-Port Networks ..................................................................12 1.5 Practical Two-Port Networks .....................................................................................15 1.5.1 Single-Element Networks .............................................................................15 1.5.2 π- and T-Type Networks ................................................................................16 1.6 Three-Port Network with Common Terminal ........................................................19 1.7 Lumped Elements .......................................................................................................22 1.7.1 Inductors .........................................................................................................22 1.7.2 Capacitors ........................................................................................................25 1.8 Transmission Line .......................................................................................................27 1.8.1 Basic Parameters ............................................................................................27 1.8.2 Microstrip Line ...............................................................................................31 1.8.3 Coplanar Waveguide .....................................................................................33 1.9 Noise Figure .................................................................................................................35 References ...............................................................................................................................41 2 Power Amplifier Design Principles ..................................................................................43 2.1 Basic Classes of Operation: A, AB, B, and C ............................................................43 2.2 Load Line and Output Impedance ...........................................................................53 2.3 Nonlinear Active Device Models ..............................................................................57 2.3.1 LDMOSFETs ...................................................................................................58 2.3.2 GaAs MESFETs and GaN HEMTs ...............................................................60 2.3.3 Low- and High-Voltage HBTs ......................................................................65 2.4 Power Gain and Stability ...........................................................................................68 2.5 Push–Pull and Balanced Power Amplifiers ............................................................79 2.5.1 Basic Push–Pull Configuration ....................................................................79 2.5.2 Baluns ..............................................................................................................82 2.5.3 Balanced Power Amplifiers ..........................................................................88 2.6 Transmission-Line Transformers and Combiners .................................................92 References .............................................................................................................................103 3 Lossless Matched Broadband Power Amplifiers ..........................................................109 3.1 Impedance Matching ................................................................................................109 3.1.1 Basic Principles .............................................................................................109 3.1.2 Matching with Lumped Elements .............................................................112 3.1.3 Matching with Transmission Lines ...........................................................124 v © 2016 by Taylor & Francis Group, LLC vi Contents 3.2 Bode–Fano Criterion .................................................................................................133 3.3 Broadband-Matching Networks with Lumped Elements ...................................135 3.4 Broadband-Matching Networks with Mixed Lumped and Distributed Elements ........................................................................................144 3.5 Matching Networks with Transmission Lines .....................................................148 3.6 Matching Technique with Prescribed Amplitude–Frequency Response .........158 3.7 Practical Examples of Broadband RF and Microwave Power Amplifiers .........163 3.8 Broadband Millimeter-Wave Power Amplifiers ...................................................168 References .............................................................................................................................177 4 Lossy Matched and Feedback Broadband Power Amplifiers ....................................181 4.1 Amplifiers with Lossy Compensation Networks .................................................181 4.1.1 Equivalent Input Device Impedance .........................................................181 4.1.2 Lossy Match Design Techniques ...............................................................184 4.1.3 Practical Examples .......................................................................................189 4.2 Feedback Amplifiers .................................................................................................195 4.2.1 Negative Feedback Design Techniques ....................................................196 4.2.2 Noise Figure .................................................................................................201 4.2.3 Practical Examples .......................................................................................202 4.3 Graphical Design of Gain-Compensating and Feedback Lossy Networks ......208 4.4 Decomposition Synthesis Method ..........................................................................212 References .............................................................................................................................215 5 Design of Wideband RF and Microwave Amplifiers Employing Real Frequency Techniques .......................................................................................................219 5.1 Real Frequency Line Segment Technique .............................................................221 5.1.1 Computation of Optimum Break Points for RF-LST ..............................235 5.1.2 Practical Approach to Model Break Points by Nonnegative Even Rational Function ...............................................................................243 5.2 Generation of Minimum Immittance Function from Its Real Part ....................247 5.3 Optimization of TPG Using a Parametric Approach ...........................................250 5.4 High-Precision Ladder Synthesis of Positive Real Functions .............................255 5.4.1 Extraction of Transmission Zero via Zero Shifting Method .................256 5.4.2 MATLAB® Implementation of Zero Shifting Algorithm .......................260 5.4.3 Synthesis with Transmission Zeros at DC and Infinity .........................263 5.4.4 MATLAB Implementation: Extraction of Transmission Zero at DC ......268 5.4.5 MATLAB Implementation: Extraction of a Pole at Infinity ...................269 5.4.6 Algorithm: General Rules of LC Ladder Synthesis .................................270 5.5 Automated Real Frequency Design of Lossless Two-Ports for Single Matching Problems .................................................................................272 5.6 Computation of Actual Elements............................................................................275 5.7 Automated Design of Matching Networks with Lumped Elements.................280 5.8 Design of Interstage Equalizers: Double Matching Problem .............................283 5.8.1 Algorithm to Construct Lossless Matching Networks under Complex Terminations at Both Ends ........................................................288 5.9 Matching Networks Constructed with Commensurate Transmission Lines ......294 5.10 Generation of Realizable Positive Real Function in Richards’s Domain ..........295 5.10.1 Properties of Richards’s Immittance Function ........................................296 5.10.2 Parametric Approach in Richards’s Domain ...........................................298 © 2016 by Taylor & Francis Group, LLC Contents vii 5.10.3 Cascade Connection of k-Unit Elements ...................................................300 5.10.4 Correction of the Richards’s Impedance after Each Extraction ............304 5.11 Integration of Richards’s High-Precision Synthesis Module with Real Frequency Matching Algorithm .............................................................................310 5.12 SRFTs to Design RF and Microwave Amplifiers ..................................................320 5.13 SRFT to Design Microwave Amplifiers .................................................................324 5.14 SRFT Single-Stage Microwave Amplifier Design Algorithm .............................326 5.14.1 Part I: Design of Front-End Matching Network ......................................327 5.14.1.1 Initialization of Nonlinear Optimization to Construct a Front-End Matching Network .................................................329 5.14.2 Result of Optimization ................................................................................330 5.14.3 Inputs to the Main Program for Part II: Design of a Back-End Matching Network .......................................................................................332 5.14.4 Results of Optimization ..............................................................................332 5.14.4.1 Initialization of Nonlinear Optimization to Construct a Back-End Matching Network ..................................................333 5.14.5 Stability of Amplifier ...................................................................................335 5.14.5.1 Investigation on the Stability of the Amplifier ........................337 5.14.6 Practical Design Aspects ............................................................................338 5.15 Design of an Ultra-Wideband Microwave Amplifier Using Commensurate Transmission Lines ...................................................................................................339 5.15.1 The First Step of the Amplifier Design: Description of the Front- End Matching Network ..............................................................................340 5.15.2 The Second Step of the Amplifier Design: Description of the Back- End Matching Network ..............................................................................342 5.15.3 Result of Optimization ................................................................................343 5.16 Physical Realization of Characteristic Impedance ...............................................346 5.17 Practical Design of Matching Networks with Mixed Lumped and Distributed Elements ........................................................................................348 5.17.1 An Almost Equivalent Transmission-Line Model of a CLC-PI Section ....................................................................................348 5.18 Physical Realization of a Single Inductor ..............................................................357 5A.1 Appendix ....................................................................................................................365 5A.1.1 Chain Parameters of a UE ..........................................................................365 5A.1.2 Chain Parameters for CLC and CT-UE-CT Sections ..............................366 5A.1.3 Do CLC and CT-UE-CT Sections Have Equal Chain Matrices at ω ?.....368 0 5A.2 Appendix: A List of MATLAB Programs ..............................................................370 References .............................................................................................................................485 6 High-Efficiency Broadband Class-E Power Amplifiers ..............................................489 6.1 Reactance Compensation Technique .....................................................................489 6.1.1 Load Networks with Lumped Elements ..................................................490 6.1.2 Load Networks with Transmission Lines ................................................496 6.2 High-Efficiency Switching Class-E Modes ............................................................500 6.2.1 Class E with Shunt Capacitance ................................................................500 6.2.2 Class E with Finite DC-Feed Inductance ..................................................506 6.2.3 Parallel-Circuit Class E ...............................................................................511 6.3 Broadband Class E with Shunt Capacitance .........................................................516 6.4 Broadband Parallel-Circuit Class E ........................................................................524 © 2016 by Taylor & Francis Group, LLC viii Contents 6.5 High-Power RF Class-E Power Amplifiers ............................................................531 6.6 Microwave Monolithic Class-E Power Amplifiers ...............................................534 6.7 CMOS Class-E Power Amplifiers ...........................................................................538 References .............................................................................................................................541 7 Broadband and Multiband Doherty Amplifiers ..........................................................545 7.1 Historical Aspect and Conventional Doherty Architectures .............................545 7.1.1 Basic Structures ............................................................................................546 7.1.2 Operation Principle .....................................................................................551 7.1.3 Offset Lines ...................................................................................................553 7.1.4 Linearity ........................................................................................................555 7.1.5 Series-Connected Load ...............................................................................556 7.2 Inverted Doherty Amplifiers ...................................................................................557 7.3 Integration ..................................................................................................................561 7.4 Digitally-Driven Doherty Amplifier ......................................................................567 7.5 Multiband and Broadband Capability ...................................................................568 7.5.1 Multiband Doherty Configurations ..........................................................568 7.5.2 Bandwidth Extension Using Reactance Compensation Technique ......571 7.5.3 Broadband Doherty Amplifier via Real Frequency Technique ............574 7.5.4 Broadband Parallel Doherty Architecture ...............................................577 7.5.5 Broadband Inverted Doherty Configuration ...........................................583 References .............................................................................................................................591 8 Low-Noise Broadband Amplifiers ..................................................................................595 8.1 Basic Principles of Low-Noise Amplifier Design .................................................595 8.1.1 Historical Aspects ........................................................................................595 8.1.2 Basic LNA Topologies .................................................................................597 8.1.3 Minimum Noise Figure ..............................................................................602 8.1.4 Filtering Multistage LNA Topology ..........................................................607 8.1.5 Linearization Techniques ...........................................................................608 8.2 Lossless Matched Broadband Low-Noise Amplifiers ..........................................612 8.3 Lossy Feedback Broadband Low-Noise Amplifiers .............................................614 8.3.1 Shunt Feedback ............................................................................................615 8.3.2 Dual Feedback ..............................................................................................618 8.3.3 Active Feedback ...........................................................................................620 8.3.4 Noise Figure .................................................................................................622 8.4 Cascode Broadband Low-Noise Amplifiers ..........................................................623 8.5 Graphical Design Technique ...................................................................................628 8.6 Broadband Millimeter-Wave Low-Noise Amplifiers ...........................................632 References .............................................................................................................................635 9 Distributed Amplifiers ......................................................................................................641 9.1 Basic Principles of Distributed Amplification ......................................................641 9.2 Microwave GaAs FET Distributed Amplifiers .....................................................647 9.2.1 Basic Configuration with Microstrip Lines ..............................................647 9.2.2 Basic Configuration with Lumped Elements ...........................................651 9.2.3 Capacitive Coupling ....................................................................................652 9.2.4 Tapered Lines ...............................................................................................654 9.2.5 Power Combining ........................................................................................659 © 2016 by Taylor & Francis Group, LLC Contents ix 9.2.6 Bandpass Configuration .............................................................................661 9.2.7 Parallel and Series Feedback ......................................................................663 9.3 Cascode Distributed Amplifiers .............................................................................665 9.4 Extended Resonance Technique .............................................................................670 9.5 Cascaded Distributed Amplifiers ...........................................................................672 9.6 Matrix Distributed Amplifiers ................................................................................675 9.7 CMOS Distributed Amplifiers ................................................................................679 9.8 Noise in Distributed Amplifiers .............................................................................684 References .............................................................................................................................688 10 CMOS Amplifiers for UWB Applications .....................................................................693 10.1 UWB Transceiver Architectures .............................................................................693 10.2 Distributed CMOS Amplifiers ................................................................................697 10.3 Common-Gate CMOS Amplifiers ...........................................................................701 10.4 CMOS Amplifiers with Lossy Compensation Circuits .......................................705 10.5 Feedback CMOS Amplifiers ....................................................................................707 10.5.1 Source Degeneration ...................................................................................708 10.5.2 Parallel Negative Feedback ........................................................................710 10.6 Noise-Canceling Technique ....................................................................................716 References .............................................................................................................................721 Index .............................................................................................................................................725 © 2016 by Taylor & Francis Group, LLC
Description: