ebook img

Bridge collapse frequencies versus failure probabilities PDF

129 Pages·2018·3.478 MB·English
by  ProskeDirk
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bridge collapse frequencies versus failure probabilities

Risk Engineering Dirk Proske Bridge Collapse Frequencies versus Failure Probabilities Risk Engineering Series editor Dirk Proske, Vienna, Austria The Springer Book Series Risk Engineering can be considered as a starting point, looking from different views at Risks in Science, Engineering and Society. The bookseriespublishesintenseanddetaileddiscussionsofthevarioustypesofrisks, causalities and risk assessment procedures. Although the book series is rooted in engineering, it goes beyond the thematic limitation,sincedecisions related torisksareneverbased ontechnicalinformation alone. Therefore issues of “perceived safety and security” or “risk judgment” are compulsory when discussing technical risks, natural hazards, (environmental) health and social risks. One may argue that social risks are not related to technical risks, however it is well known that social risks are the highest risks for humans and are therefore immanent in all risk trade-offs.The book seriestries to cover the discussion of all aspects of risks, hereby crossing the borders of scientific areas. More information about this series at http://www.springer.com/series/11582 Dirk Proske Bridge Collapse Frequencies versus Failure Probabilities With 29 Tables and 90 Figures 123 DirkProske University of Natural Resourcesand LifeSciences Vienna Austria ISSN 2195-433X ISSN 2195-4348 (electronic) Risk Engineering ISBN978-3-319-73832-1 ISBN978-3-319-73833-8 (eBook) https://doi.org/10.1007/978-3-319-73833-8 LibraryofCongressControlNumber:2017963976 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringer InternationalPublishingAGpartofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland For Beatrix and Rolf Contents 1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Terms and Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Definition of the Term “Bridge” . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Definition of the Term “Collapse” . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Definition of the Term “Cause”. . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Definition of the Term “Bridge Collapse Frequency” . . . . . . . . . 8 2.6 Definition of the Term “Failure Probability”. . . . . . . . . . . . . . . . 9 2.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Categorization of Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Structural Systems of Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Construction Material of Bridges. . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 Construction Method of Bridges . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5 Age Distribution of Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Measures of Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Probability of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2.1 Unconditional Probability of Failure . . . . . . . . . . . . . . . . 28 5.2.2 Conditional Probability of Failure. . . . . . . . . . . . . . . . . . 29 vii viii Contents 5.3 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.2 Mortality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.3 Fatal Accident Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3.4 F-N-Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3.5 Lost Life Years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4 Target Probability of Failure Values . . . . . . . . . . . . . . . . . . . . . 36 5.5 Correction of Probability of Failure . . . . . . . . . . . . . . . . . . . . . . 43 5.5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.5.2 Correlation Consideration. . . . . . . . . . . . . . . . . . . . . . . . 45 5.5.3 Human Error Consideration . . . . . . . . . . . . . . . . . . . . . . 48 5.5.4 Structural Determinacy. . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.5.5 Maintenance and Deterioration . . . . . . . . . . . . . . . . . . . . 54 5.5.6 Actual Loads and New Loads. . . . . . . . . . . . . . . . . . . . . 55 5.5.7 Structural Probabilities of Failure . . . . . . . . . . . . . . . . . . 57 5.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6 Collapse Frequencies of Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 Data Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3 Number of Bridges Worldwide . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4 Collapse Frequency of Bridges . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Time-Dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.6 Causes of Damages and Conclusions. . . . . . . . . . . . . . . . . . . . . 78 6.6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.6.2 Bridge Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.6.3 Bridge Collapse Fluctuation . . . . . . . . . . . . . . . . . . . . . . 89 6.6.4 Bridge Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.6.5 Bridge Structural System . . . . . . . . . . . . . . . . . . . . . . . . 96 6.6.6 Bridge Age Distribution. . . . . . . . . . . . . . . . . . . . . . . . . 97 6.7 Prediction of Future Collapse Frequencies . . . . . . . . . . . . . . . . . 99 6.8 Comparison of Target Values and Failure Probabilities. . . . . . . . 104 6.9 Further Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.10 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 125 Chapter 1 Objective Probably more than a billion structures exist on earth including several million bridges.Thesuccessofthetechnicalproduct“structures”isnotonlybasedonthe gained large improvement of the quality of life for humans including protection againstenvironmentalhazardsandconditionsandsecurity,itisalsostronglyrelated totheoutstandingsafetyofthestructuresitself. Structuresareprobablyoneoftheearliesttechnicalproductsproducedbymankind (Figs.1.1and1.2).ThecodeofHammurabibyimposingharshpunishmenttobuilders of collapsing structures shows that the safety of structures has been an important issuesincethousandsofyears.Thetoolstoensureandprovideasufficientsafetyof structureshaveevolvedoverthistime,forarchbridgesseeProskeandvanGelder (2009). Todaythereexistdifferentnumericalparameterstoevaluatethesafetyofstruc- tures.Oneoftheseparametersisthe“probabilityoffailure”ofastructure.Theterm probabilityoffailureandfailureprobabilityofstructuresrespectivelycanbefound inalargenumberofscientificpublications,booksorcodesofpractice.Thecomputa- tionoftheprobabilityoffailureofstructures,andspecificallybridges,isperhapsnot dailybusiness,butstate-of-the-artandhasbeencarriedoutinnumerouscases[just seetheconferenceproceedingsoftheInternationalConferenceonStructuralSafety & Reliability (ICOSSAR), International Conference on Applications of Statistics andProbabilityinCivilEngineering(ICASP),EuropeanSafetyandReliabilityCon- ference(ESREL)andInternationalProbabilisticWorkshopseries(IPW)].Ifwehave computedtheprobabilityoffailureinsomanycasesweshouldbeabletocompare thesetheoreticalvalueswiththeobservation,thecollapsefrequency. However, such comparisons of the probability of failure with the frequency of collapse are not common in structural engineering, they do not exist for bridges. In many codes and books it is argued that these two parameters can not directly becomparedduetotheirindividuallimitations.Thisargumentissurprisingsincein otherindustriessuchastheNuclearPowerIndustrysuchcomparisonsarecarriedout (Proske2016)andareoftenanissueofpublicdiscussionrelatedtothequalityofthe models.Evenfurther,ourmodelsshouldalwaysbecomparabletorealityandtoreal ©SpringerInternationalPublishingAG,partofSpringerNature2018 1 D.Proske,BridgeCollapseFrequenciesversusFailureProbabilities,RiskEngineering, https://doi.org/10.1007/978-3-319-73833-8_1 2 1 Objective Fig.1.1 Reconstruction of a typical pile dwelling around 4000 B.C in Switzerland (Seengen) (PictureD.Proske) Fig.1.2 Gizapyramidcomplexbuildaround2500B.C.(PictureD.Proske) worldobservationsrespectivelywhichwouldinourcasebethefrequencyofcollapse. If our models are neither based, nor compared nor confirmed by observations, we developmodelsandparameterswhichareneitherusefulnorverifiable.Wehaveto

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.