ebook img

Breath Figures : Mechanisms of Multi-scale Patterning and Strategies for Fabrication and Applications of Microstructured Functional Porous Surfaces PDF

240 Pages·2020·14.883 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Breath Figures : Mechanisms of Multi-scale Patterning and Strategies for Fabrication and Applications of Microstructured Functional Porous Surfaces

Juan Rodríguez-Hernández Edward Bormashenko Breath Figures Mechanisms of Multi-Scale Patterning and Strategies for Fabrication and Applications of Microstructured Functional Porous Surfaces Breath Figures Juan Rodríguez- Hernández • Edward Bormashenko Breath Figures Mechanisms of Multi-Scale Patterning and Strategies for Fabrication and Applications of Microstructured Functional Porous Surfaces Juan Rodríguez-Hernández Edward Bormashenko Institute of Polymer Science & Technology Ariel University, Engineering Faculty, Madrid, Spain Chemical Engineering Department Ariel, Israel ISBN 978-3-030-51135-7 ISBN 978-3-030-51136-4 (eBook) https://doi.org/10.1007/978-3-030-51136-4 © Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Contents 1 Introduction to Micropatterned Surfaces . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Breath Figures: The Historical Survey . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Aim of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Breath-Figures Formation: Physical Aspects . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Evaporation of the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Role of the Solvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Role of the Interfacial Properties of Solvent . . . . . . . . . . . . 17 2.2.3 Interplay of Evaporation of the Solvent and Interfacial Properties of the Polymer Solution: Marangoni Flows and Formation of the Large-Scale Pattern . . . . . . . . . . . . . . 22 2.2.4 Role of the Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.5 Summary of the Parameters Involved in the BFs Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Nucleation, Condensation, and Growth of Water Droplets . . . . . . . 30 2.4 Mechanisms of Micro-Scaled Ordering in the Breath- Figures Self-A ssembly . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Hierarchy of the Temporal and Spatial Scales Inherent for the Breath- Figures Self-Assembly: Dimensionless Numbers Describing the Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 Polymers Employed and Role of the Molecular Characteristics on the BFs Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Type of Polymers Employed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 Standard Commercially Available Polymers . . . . . . . . . . . . 52 3.2.2 Stimuli-Responsive Polymers . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.3 Biodegradable Synthetic and Natural Occurring Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 v vi Contents 3.2.4 Engineered High Performance Polymers: High Temperature Stability and Chemical Resistance . . . . . 65 3.2.5 Conductive and Semiconductive Polymers . . . . . . . . . . . . . 70 3.3 Inorganic–Organic Hybrid Microporous Materials . . . . . . . . . . . . . 74 3.4 Other Polymers Employed for the Preparation of BFs . . . . . . . . . . 80 3.5 Macromolecular Characteristics of the Polymers Employed in BFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.5.1 Role of the Functional Groups in the Polymer Chain and the Polymer Molecular Weight . . . . . . . . . . . . . . . . . . . 80 3.5.2 Composition and Topology of the Polymer . . . . . . . . . . . . . 84 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4 Methodologies Involved in Manufacturing Self-Assembled Breath- Figures Patterns: Drop-Casting and Spin- and Dip-Coating – Characterization of Microporous Surfaces . . . . . 111 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Methods Exploited for Manufacturing Breath-Figures Patterns . . . 112 4.2.1 Drop-Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.2 Spin-Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2.3 Dip-Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.2.4 The Emulsion Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.3 Formation of Mono- and Multilayered Microporous Surfaces . . . . 124 4.4 Methods Used for Characterization of Breath-Figures Patterns . . . 129 4.4.1 Optical Microscopy of the Patterns . . . . . . . . . . . . . . . . . . . 129 4.4.2 SEM Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.4.3 AFM Study of the Topography . . . . . . . . . . . . . . . . . . . . . . 130 4.4.4 TEM Study of the Breath-Figures Patterns . . . . . . . . . . . . . 131 4.4.5 X-Ray Photoelectron Spectroscopy (XPS) of the Breath-F igures Samples . . . . . . . . . . . . . . . . . . . . . . . 131 4.4.6 X-Ray Diffraction (XRD) Analysis of the Breath- Figures- Inspired Structures . . . . . . . . . . . . . . 132 4.4.7 Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Differential Thermal Analysis (DTA) of the Structures Obtained with the Breath-Figures Self-A ssembly . . . . . . . . . . . . . . . . 132 4.4.8 Raman and FTIR Spectroscopy of the Samples Prepared with the Breath-Figures Self-Assembly . . . . . . . . . . . . . . . . 133 4.4.9 Nuclear Magnetic Resonance (NMR) of Polymers Used for the Breath-Figures Self-Assembly . . . . . . . . . . . . . . . . . 134 4.4.10 Mass Spectrometry Methods for the Characterization of Breath-Figures Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.4.11 Contact Angle Characterization of the Breath-Figures- Inspired Topographies . . . . . . . . . . . 135 4.4.12 Quantitative Characterization of Ordering Inherent for Patterns Resulting from the Breath-Figures Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Contents vii 5 Introducing Chemical Functionalities to Microporous Surfaces: Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2 Strategies Based on the Use of Functional Polymers/Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.2.1 Homopolymers and Copolymers . . . . . . . . . . . . . . . . . . . . . 151 5.2.2 Functionalized Amphiphilic Polymers . . . . . . . . . . . . . . . . . 152 5.2.3 Blends of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2.4 Inorganic Compounds and Polymers: Hybrid Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.3 Strategies Based on the Post-modification of the Pores . . . . . . . . . . 159 5.4 Strategies for the Functionalization of Both/Either Inside and/or Outside of the Pores . . . . . . . . . . . . . . 162 5.5 Plasma Treatment of Polymer Surfaces Arising from the Breath-Figures Self-Assembly . . . . . . . . . . . . . . . . . . . . . 164 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6 Hierarchically Ordered Microporous Surfaces . . . . . . . . . . . . . . . . . . 169 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.2 Hierarchically Structured Porous Films Obtained by Self-Assembly of Block Copolymers . . . . . . . . . . . . . . . . . . . . . 170 6.3 Hierarchically Ordered Microporous Surfaces Combining BFs and Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4 Multiscale Ordered Surface by Demixing from Polymer Blend Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.5 Formation of Hierarchically Ordered BFs on Patterned Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.6 Combining Photolithography with BFs . . . . . . . . . . . . . . . . . . . . . . 183 6.7 Combining Electrospinning/Electrospraying with BFs . . . . . . . . . . 184 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7 From Planar Surfaces to 3D Porous Interfaces . . . . . . . . . . . . . . . . . . 189 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.2 Honeycomb Structures Formed Nonplanar Substrates . . . . . . . . . . 190 7.3 Ordered Structures Obtained by Template Organization of Water Droplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.4 Hot-Embossed Microporous Films . . . . . . . . . . . . . . . . . . . . . . . . . 200 7.5 Honeycomb-Structured Surfaces in 3D Printed Objects . . . . . . . . . 201 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 8 Applications of the Porous Structures Obtained with the Breath-Figures Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . 207 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8.2 Manufacturing of the Surfaces with Controlled Wettability . . . . . . 208 8.3 Optical Applications of the Films Prepared with the Breath-Figures Self-Assembly . . . . . . . . . . . . . . . . . . . . . . 210 viii Contents 8.4 Breath-Figures Self-Assembly and Manufacturing of Separation and Ultrafiltration Membranes . . . . . . . . . . . . . . . . . 212 8.5 Membranes Prepared with the Breath-Figures Self- Assembly and Water–Oil Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8.6 Electronic Applications of the Structures Prepared with the Breath- Figures Self-Assembly . . . . . . . . . . . . . . . . . . . . . . 213 8.7 Biomedical Applications of the Surfaces Prepared with the Breath- Figures Self-Assembly . . . . . . . . . . . . . . . . . . . . . . 216 8.8 Antimicrobial Porous Surfaces: Suppression of Biofilm Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 8.9 Structures Prepared with the Breath Figures for the Elaboration of Sensors and Catalytic Purposes . . . . . . . . . . 220 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Chapter 1 Introduction to Micropatterned Surfaces Abstract An interest in micropatterned surfaces has been boosted in last decades owing to their crucial role, in biotechnology, tribology, optical, and microfluidics applications. Manufacturing of micropatterned surfaces is a key factor for industry implementation of biomimetic-inspired effects such as the lotus and shark skin effects. Our book is devoted to one of the most elegant, inexpensive, and flexible methods, enabling manufacturing micro- and nanopatterned porous, polymer inter- faces, namely: the breath-figures self-assembly. This experimental technique allows obtaining well-ordered, hierarchical, honeycomb surface patterns. Breakthrough in the application of the breath-figures patterns was achieved when Widawski, François, and Pitois reported manufacturing of polymer films with a self-organized, micro-scaled, honeycomb morphology using the breath-figures condensation pro- cess. The reported process is based on the rapidly evaporated polymer solutions exerted to humidity. The history of research, key experimental and theoretical find- ings, and the state of art in this rapidly progressing field is covered in this book. Keywords Micropatterned surfaces · Breath-figures Self-assembly · Hierarchical honeycomb patterns · Polymer solutions · Polymer interfaces · Humidity An interest to micropatterned surfaces has been boosted in the last decades owing to their crucial role, among others in biotechnology [1], tribology [2], optical [3], and microfluidics [4] applications. Micropatterned surfaces enable the control of lining cells’ position, shape, and function [1], constituting of dry and wet friction [2], design of the surfaces with prescribed optical properties [3], transport, and precise manipulation of micro-volumes of liquids [4]. Manufacturing of micropatterned surfaces is a key factor for industry implementation of biomimetic-inspired effects such as the lotus and shark skin effects, allowing preparing non-wettable interfaces (see Refs. [5, 6] and Fig. 1.1) and surfaces demonstrating low hydrodynamic drag [7]. The lotus effect supplying to surfaces extremal water repellency is illustrated with Fig. 1.1. © Springer Nature Switzerland AG 2020 1 J. Rodríguez-Hernández, E. Bormashenko, Breath Figures, https://doi.org/10.1007/978-3-030-51136-4_1 2 1 Introduction to Micropatterned Surfaces Fig. 1.1 A 50 μl water droplet deposited on a pigeon feather. The pronounced superhydrophobic- ity (lotus effect) of the feather is clearly seen A variety of sophisticated techniques have been implemented for manufacturing micropatterned surfaces, including micro-printing [1], replica molding [3, 8], pho- tolithography, molecular assembly patterning, stencil-assisted patterning, ink-jet technology, and laser-guided writing of patterns [9]. Excellent introduction into experimental techniques involved in manufacturing of micropatterned surfaces is supplied in Ref. [9]. In contrast to these approaches, several methodologies based on the inherent surface characteristics have been developed. These approaches take advantage of the surface instabilities that can be induced either by external fields (electromagnetic, temperature, mechanical stress, etc.) or exist in inherently unsta- ble thin films to produce different micro- and submicrometer surface patterns [10, 11]. As a result, unprecedented patterns that are difficult if not impossible to obtain by traditional patterning techniques have been straightforwardly achieved by instability- based patterning. A wide myriad of instability-based patterning processes have been reported including those based on structuration driven by surface/interfacial energy (such as dewetting, phase separation of blends and block copolymers, or template-guided structuration), [12–16], field-induced structuration (electrohydrodynamic/thermal gradient-induced surface patterning, elastic instability and surface wrinkling, and reaction–diffusion surface patterns) [17–19], and influence of water on hydrophobic polymer surfaces (including nanobubble assisted nanopatterning, ion-induced poly- mer nanostructuration and breath-figures self-assembly) [20–23] (Fig. 1.2). Within this context, our book is devoted to one of the most elegant, inexpensive, and flexible methods, enabling manufacturing micro- and nano-patterned porous, polymer interfaces, namely, the breath-figures self-assembly. This experimental technique allows obtaining well-ordered, hierarchical, honeycomb surface patterns. With that, the use of the breath-figures self-assembly today is focused on polymeric

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.