BREAKING AND DISSIPATION OF OCEAN SURFACE WAVES Overthepast15years,ourunderstandingofthebreakinganddissipationofoceanwaves hasundergoneadramaticleapforward.Fromaphenomenonwhichwasverypoorlyunder- stood, it has emerged as a process whose physics is clarified and quantified. This book presentsthestateoftheartofourcurrentunderstandingofthebreakinganddissipationof oceanwaves. Wave breaking is an intermittent random process, very fast by comparison with other processes in the wave system. Distribution of wave breaking on the water surface is not continuous,butitsroleinmaintainingtheenergybalancewithinthecontinuouswind–wave fieldiscritical.Suchbreakingrepresentsoneofthemostinterestingandchallengingprob- lemsforfluidmechanicsandphysicaloceanography.Oceanwavebreakingalsoplaysthe primaryroleintheair–seaexchangeofmomentum,massandheat,anditisofsignificant importanceforoceanremotesensing,coastalandoceanengineering,navigationandother practicalapplications.Thisbookoutlinesthestateofwave-breakingresearchandpresents the main outstanding problems. Non-breaking dissipation and non-dissipative effects of breaking waves, their influence on the atmospheric boundary layer and on upper-ocean mixing,includingextremeweatherconditions,arealsodiscussed. Breaking and Dissipation of Ocean Surface Waves is a valuable resource for anyone interestedinthistopic:researchers,modellers,forecasters,engineersandgraduatestudents inphysicaloceanography,meteorologyandoceanengineering. ALEXANDER BABANIN is a Professor in the Faculty of Engineering and Industrial Sciences at Swinburne University of Technology, Melbourne, Australia. His bachelor’s degree inPhysicsandmaster’sdegreeinPhysical Oceanography arefromtheFacultyof PhysicsatLomonosovMoscowStateUniversity,andhisPh.D.onSpectralCharacteristics ofSurfaceWindWaveFieldsisfromtheMarineHydrophysicalInstituteinSevastopol.His researchinterestsinvolvewind-generatedwaves,air–seainteractionandoceanturbulence, includingdynamicsofsurfaceoceanwaves,wavebreakinganddissipation,air–seabound- arylayer,extremeoceanicconditions,wavestatistics,oceanmixingandremotesensing. BREAKING AND DISSIPATION OF OCEAN SURFACE WAVES ALEXANDERV.BABANIN SwinburneUniversityofTechnology, Melbourne,Australia CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, SãoPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107001589 ©CambridgeUniversityPress2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Babanin,AlexanderV.,1960- Breakinganddissipationofoceansurfacewaves/AlexanderV.Babanin. p. cm. ISBN978-1-107-00158-9(Hardback) 1. Oceanwaves–Measurement. 2. Oceanwaves–Simulationmethods. I. Title. GC205.B342011 (cid:2) 551.463–dc22 2011011866 ISBN 978-1-107-00158-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ThisbookisdedicatedtomyparentsVladimirandVera towhomIamindebted. Contents Preface pagexi 1 Introduction 1 1.1 Wavebreaking:theprocessthatcontrolswaveenergydissipation 2 1.2 Conceptofwavebreaking 4 2 Definitionsforwavebreaking 12 2.1 Breakingonset 13 2.2 Breakinginprogress 14 2.3 Residualbreaking 18 2.4 Classificationofwave-breakingphases 19 2.5 Breakingprobability(frequencyofoccurrence) 22 2.6 Dispersionrelationship 27 2.7 Breakingseverity 28 2.8 Typesofbreakingwaves:plunging,spillingandmicro-breaking 40 2.9 Criteriaforbreakingonset 42 2.10 Radiativetransferequation 47 3 Detectionandmeasurementofwavebreaking 49 3.1 Early observations of wave breaking, and measurements ofwhitecapcoverageofoceansurface 50 3.2 Traditionalmeans(visualobservations) 59 3.3 Contactmeasurements 63 3.4 Laboratorymeasurementsindeterministicwavefields 69 3.5 Acousticmethods 74 3.6 Remote sensing(radar,opticalandinfraredtechniques) 93 3.7 Analytical methods of detecting breaking events in surface elevationrecords 98 3.8 Statistical methods for quantifying breaking probability and dissipation 112 4 Fully nonlinear analytical theories for surface waves and numerical simulationsofwavebreaking 118 4.1 Freesurfaceatthewavebreaking 120 vii viii Contents 4.1.1 Simulatingtheevolutionofnonlinearwavestobreaking 124 4.1.2 Simulationofthebreakingonset 134 4.1.3 Influenceofwindandinitialsteepness 136 4.2 Lagrangiannonlinearmodels 139 5 Wave-breakingprobability 142 5.1 Initiallymonochromaticwaves 143 5.1.1 Evolutionofnonlinearwavestobreaking 148 5.1.2 Measurement of the breaking onset; limiting steepness atbreaking 150 5.1.3 Laboratoryinvestigationofwindinfluence 161 5.1.4 Distancetothebreaking 165 5.2 Wave-breakingthreshold 168 5.3 Spectralwaves 175 5.3.1 Breakingprobabilityofdominantwaves 176 5.3.2 Breakingprobabilityofsmall-scalewaves 182 5.3.3 Breakingindirectionalwavefields 199 5.3.4 Wind-forcing effects, and breaking threshold in terms ofwindspeed 207 6 Wave-breakingseverity 219 6.1 Lossofenergybyaninitiallymonochromaticsteepwave 220 6.2 Dependenceofthebreakingseverityonwavefieldspectralproperties 227 7 Energydissipationacrossthewavespectrum 232 7.1 Theoriesofbreakingdissipation 233 7.1.1 Probability,quasi-saturatedandwhitecapmodels 234 7.1.2 Kinetic–dynamicmodel 237 7.2 Simulatingthewavedissipationinphase-resolventmodels 238 7.3 Measurementsofthewavedissipationofspectralwaves 246 7.3.1 Laboratorymeasurements 247 7.3.2 Differenceinthespectraldistributionofdissipationdueto differenttypesofbreakingmechanisms 250 7.3.3 Fieldmeasurements 252 7.3.4 Cumulativeeffect 263 7.3.5 Whitecappingdissipationatextremewindforcing 265 7.3.6 Directionaldistributionofthewhitecappingdissipation 269 7.4 Whitecappingdissipationfunctionsinspectralmodels 272 7.5 Non-breakingspectraldissipation 295 8 Non-dissipativeeffectsofbreakingonthewavefield 322 8.1 Spectralpeakdownshiftduetowavebreaking 323 8.2 Roleofwavebreakinginmaintainingthelevelofthespectrumtail 327 8.3 Wind-inputenhancementduetowavebreaking 333 Contents ix 9 Roleofwavebreakingintheair–seainteraction 350 9.1 Atmosphericboundarylayer 350 9.1.1 Sea-dragdependenceonwavebreaking 352 9.1.2 Generationofspray 360 9.1.3 Boundarylayeratextremebreaking 371 9.2 Upper-oceanmixing 375 9.2.1 Transfer ofenergy and momentum fromthewind tothe ocean 376 9.2.2 Generationofturbulence 384 9.2.3 Injectingthebubbles;gasexchangeacrossthesurface 396 10 Conclusions.Whatelsedoweneedtoknowaboutwavebreaking? 405 References 426 Index 461