BRANCHING RULES FOR n-FOLD COVERING GROUPS OF SL OVER A 2 NON-ARCHIMEDEAN LOCAL FIELD CAMELIA KARIMIANPOUR Abstract. Let G(cid:102)1 be the n-fold covering group of the special linear group of degree two, over a non- Archimedeanlocalfield. Wedeterminethedecompositionintoirreduciblesoftherestrictionoftheprincipal 6 series representations of G(cid:102)1 to a maximal compact subgroup of G(cid:102)1. 1 0 2 n 1. Introduction a J Inthispaper,coveringgroups,alsoknownintheliteratureasmetaplecticgroups,arecentralextensions 3 ofasimplyconnectedsimpleandsplitalgebraicgroup, overanon-ArchimedeanlocalfieldF, bythegroup ] ofthen-throotsofunity,µn. TheproblemofdeterminingthisclassofgroupswasstudiedbySteinberg[22] T and Moore [15] in 1968, and further completed by Matsumoto [12] in 1969 for simply connected Chevalley R groups. Around the same time, Kubota independently constructed n-fold covering groups of SL [10] and 2 . h GL [11], by means of presenting an explicit 2-cocycle. Kubota’s cocycle is expressed in terms of the n-th 2 t a Hilbert symbol. m Since then, there have been a number of studies of representations of this class of groups from different [ perspectives, among them being the work of H. Aritu¨rk [1], D. A. Kazhdan and S. J. Patterson [9], C. Moen [14], D. Joyner [6, 7], G. Savin [20], M. Weissman and T. Howard [5], and P. J. McNamara [13]. 1 v In this paper, we consider the principal series representations of the n-fold covering group S(cid:102)L2(F) of 33 SL2(F). The principal series representations of S(cid:102)L2(F) are those representations that are induced from 3 the inverse image B(cid:102)1 of a Borel subgroup B1 of SL (F). The construction of those representations of B(cid:102)1 2 0 that are trivial on the unipotent radical of B(cid:102)1 brings us to the study of the irreducible representations of 0 1. the metaplectic torus T(cid:102)1, i.e., the inverse image of the split torus, T1, of SL2(F) in S(cid:102)L2(F). 0 An important feature of T(cid:102)1, which differentiates the nature of its representations from those of a linear 6 torus, is that it is not abelian. However, it is a Heisenberg group and its irreducible representations are 1 : governedbytheStone-vonNeumanntheorem. TheStone-vonNeumanntheoremcharacterizesirreducible v representations of Heisenberg groups, according to their central characters. Indeed, given a character of i X the centre of a Heisenberg group that satisfies some mild conditions, the Stone-von Neumann theorem r provides a recipe to construct the corresponding, unique up to isomorphism, irreducible representation a of the Heisenberg group. The construction involves induction from a maximal abelian subgroup of the Heisenberg group. We only consider those characters of the centre of T(cid:102)1 where µ acts by a fixed faithful n character. Once an irreducible representation ρ , with central character χ, of T(cid:102)1 is obtained, the principal series χ representationπχ ofS(cid:102)L2(F)isIndS(cid:102)L2(F)ρχ,whereρχ istriviallyextendedontheunipotentradicalsubgroup B(cid:102)1 of B(cid:102)1. These representations admit several open questions. The question we consider, and answer, in this paper is to decompose π upon the restriction to the inverse image K(cid:102)1 of a maximal compact subgroup χ Keywords: local field, covering group, representation, Hilbert symbol, K-type 2010 Mathematics Subject Classification: 20G05 1 2 C.KARIMIANPOUR K1 of SL (F). We refer to this decomposition as the K-type decomposition. We assume n|q−1, where q 2 is the size of the residue field of F, so that the central extension S(cid:103)L2(F) splits over K1. The study the decomposition of the restriction of representations to a particular subgroup is a common technique in representation theory. In the theory of real Lie groups, restriction to maximal compact subgroups retains a lot of information from the representation; in fact, such a restriction is a key step towards classifying irreducible unitary representations. In the case of reductive groups over p-adic fields, investigating the decomposition upon restriction to maximal compact subgroups reveals a finer structure oftherepresentation, intheinterestsofrecoveringessentialinformationabouttheoriginalrepresentation. The K-type problem for reductive p-adic groups is visited and solved in certain cases, including the principal series representations of GL(3) [2, 3, 19], and SL(2) [16, 17], representations of GL(2) [4], and supercuspidal representations of SL(2) [18]. Themainideaistoreducetheproblemtocalculatingthedimensionsofcertainfinite-dimensionalHecke algebras. The key calculation for determining the decomposition is the determination of certain double cosets that support intertwining operators for the restricted principal series representation (Proposition 3 and Proposition 4). Our method is aligned with the one in [16] for the linear group SL (F); however, the technicalities in 2 the covering case are much more involved than the linear case, and the results are fairly different. For instance, the K-type decomposition is no longer multiplicity-free (Corollary 2). Thispaperisorganizedasfollows. InSection2, wepresentKubota’sconstructionofthecoveringgroup of SL (F), in Section 3 we overview the structure of this covering group and compute some subgroups 2 of our interest. We compute the K-type decomposition for the principal series representations of S(cid:103)L2(F) in Section 4. This decomposition is completed by considering a similar problem for the n-fold covering group of GL (F) in Section 5. Our main result, Theorem 2, is stated in Section 6. 2 2. Notation and Background Let F be a non-Archimedean local field with the ring of integers O and the maximal ideal p of O. Let κ := O/p be the residue field and q = |κ| be its cardinality. Let O× denote the group of units in O. We fix a unoformizing element (cid:36) of p. For every x ∈ F×, the valuation of x is denoted by val(x), and |x| = q−val(x). Let n ≥ 2 be an integer such that n|q−1. Set n = n if n is odd, and n = n if n is even. 2 We assume that F contains the group µ of n-th roots of unity. n Set G = GL (F), and G1 = SL (F). Let B1 (B) be the standard Borel subgroup of G1 (G) and N1 (N) 2 2 beitsunipotentradical, andletT1 (T)bethestandardtorusinG1 (G). SetK1 = SL (O)(K = GL (O)) 2 2 to be a maximal compact subgroup of G1 (G). By the Iwasawa decomposition, we have G1 = T1N1K1 (G = TNK). Our object of study is the central extension G(cid:102)1 of G1 by µ , n (1) 0 → µ →i G(cid:102)1 →p G1 → 0, n where i and p are natural injection and projection maps respectively. The group G(cid:102)1, which we call the n-fold covering group of G1, is constructed explicitly by Kubota [10]. In order to describe Kubota’s construction, we need knowledge of the n-th Hilbert symbol (, ) : F××F× → µ . Under our assumption n n on n, the n-th Hilbert symbol is given via (a,b)n = cq−n1, where c = (−1)val(a)val(b)abvvaall((ab)), and c is the image of c in κ×. We benefit from the properties of the n-th Hilbert symbol, which can be found in [21, Ch XIV]. In particular, we benefit extensively from the following fact: (a,b) = 1 for all a ∈ F×, if and n only if b ∈ F×n. BRANCHING RULES FOR n-FOLD COVERING GROUPS OF SL2 OVER A NON-ARCHIMEDEAN LOCAL FIELD 3 Define the map β : G1×G1 → µ by n (cid:40) (cid:18) (cid:19) (cid:18)(cid:18) (cid:19)(cid:19) X(g g ) X(g g ) a b c if c (cid:54)= 0 1 2 1 2 (2) β(g ,g ) = , , where X = 1 2 X(g ) X(g ) c d d otherwise. 1 2 n In [10] Kubota proved that β is a non-trivial 2-cocycle in the continuous second cohomology group of G1 with coefficients in µ ; whence, G(cid:102)1 = G1×µ as a set, with the multiplication given via (g ,ζ )(g ,ζ ) = n n 1 1 2 2 (g g ,β(g ,g )ζ ζ ), for all g ,g ∈ G1 and ζ ,ζ ∈ µ . 1 2 1 2 1 2 1 2 1 2 n In 1969, Kubota extends the map β to a 2-cocycle β(cid:48) for G(cid:101) in [11], which defines the n-fold covering group G(cid:101) ∼= F×(cid:110)G(cid:102)1 of G. The covering group G(cid:101) fits into the exact sequence 0 → µn →i G(cid:101) →p G → 0. For all t,s ∈ F×, set dg(t) = (cid:0)t 0 (cid:1) ∈ T1, dg(t,s) = (t 0) ∈ T, and ι(t) = (dg(t),1) ∈ T(cid:102)1. Set 0 t−1 0 s w = (cid:0) 0 1(cid:1), and w = (w,1) ∈ G(cid:102)1. Moreover, for matrices X and Y, with Y invertible, let XY := Y−1XY −1 0 (cid:101) and YX := YXY−1 denote the conjugations of X by Y. 3. Structure Theory For any subgroup H of G1, the inverse image H(cid:101) := p−1(H) is a subgroup of G(cid:102)1. In particular, we are interested in the subgroups T(cid:102)1, B(cid:102)1, and K(cid:102)1 of G(cid:102)1. We say the central extension splits over the subgroup H of G1, if there exists an isomorphism that yields p(H)−1 ∼= H ×µ . n It is not difficult to see that T(cid:102)1 is not commutative, and hence, the central extension does not split over T1 (and therefore neither over B1). Additionally, it is easy to see that the commutator subgroup [T(cid:102)1,T(cid:102)1] ∼= µ is central in (1); which implies that T(cid:102)1 is a two-step nilpotent group, also known as a n Heisenberg group. Clearly, µ ∈ Z(T(cid:102)1), indeed, using the properties of the Hilbert symbol and some n elementary calculation, one can show that Z(T(cid:102)1) = {(dg(t),ζ) | t ∈ F×n,ζ ∈ µ }. n Lemma 1. The index of Z(T(cid:102)1) in T(cid:102)1 is n2. Proof. Note that [T(cid:102)1 : Z(T(cid:102)1)] = [F× : F×n], which because F× ∼= O× × Z, is equal to n[O× : O×n]. Consider the homomorphism φ : O× → O×n. Then ker(φ) = {x ∈ O×| xn = 1}. Note that f(x) = xn −1 = 0 has (n,q−1), which equals n under our assumption of n|q−1, solutions in the cyclic group κ×. By Hensel’s lemma, any such root in κ× lifts uniquely to a root in O×. It follows that, |ker(φ)| = n. Therefore, [O× : O×n] = |ker(φ)| = n, and the result follows. (cid:3) InordertoconstructprincipalseriesrepresentationsofG(cid:102)1 inSection4,weneedtoconstructirreducible representations of the Heisenberg group T(cid:102)1. To do so, we need to identify a maximal abelian subgroup of T(cid:102)1. Set A1 = C (T(cid:102)1 ∩K(cid:102)1), to be the centralizer of T(cid:102)1 ∩K(cid:102)1 in T(cid:102)1. It is not difficult to calculate T(cid:102)1 that A1 = {(dg(a),ζ) | a ∈ F×, n|val(a), ζ ∈ µ }, and see that it is abelian. Observe that T(cid:102)1∩K(cid:102)1 ⊂ A1 n implies that A1 is a maximal abelian subgroup. Note that [T(cid:102)1 : A1] = [Z : nZ] = n. Let N1 be the unipotent radical of B1. It follows directly from the Kubota’s formula for β that β| N1 is trivial, so N1×{1} is a subgroup of G(cid:102)1. We identify N1 with N1×{1}. Under this identification, we have the covering analogue of the Levi decomposition: B(cid:102)1 = T(cid:102)1(cid:110)N1. Next, we describe a family of compact open subgroups of G(cid:102)1. It is proven in [11] that (cid:40) (cid:18)(cid:18) (cid:19)(cid:19) a b (c,d) , 0 < val(c) < ∞ (3) K(cid:102)1 → K1×µ , (k,ζ) (cid:55)→ (k,s(k)ζ), where s = n n c d 1, otherwise. 4 C.KARIMIANPOUR isanisomorphism. TheimageofK1 inK(cid:102)1 undertheisomorphism(3)isthesubgroupK(cid:101)0 := {(k,s(k)−1) | k ∈ K1} of K(cid:102)1. Consider the compact open congruent subgroups K1 := {g ∈ K1 | g ≡ I mod pj}, for j 2 j ≥ 1, of K1. Lemma 2. The central extension (1) splits trivially over each of the subgroups K1, j ≥ 1, T1∩K1, and j B1∩K1. Proof. Using the Hensel’s lemma, it is easy to see that 1 + p ⊂ O×n. Then, it follows from (3) and properties of the n-th Hilbert symbol that, for all i ≥ 1, s| is trivial. On the other hand, it follows K1 j directly from (3) that s| and s| are trivial. (cid:3) T1∩K1 B1∩K1 We identify K1 ∼= K1 ×{1}, j ≥ 1, B1 ∩K1 ∼= (B1∩K1)×{1} and T1 ∩K1 ∼= (T1∩K1)×{1} as j j subgroups of K(cid:102)1. In a similar way, we define the subgroups T(cid:101), B(cid:101) and K(cid:101) of G(cid:101) to be the inverse images of the standard torus, Borel, and the maximal compact K = GL(O) subgroups of G respectively. The central extension G(cid:101) does not split over T. Moreover, T(cid:101) is a Heisenberg group. It is not difficult to see that Z(T(cid:101)) = {(dg(s,t),ζ) | s,t ∈ F×n,ζ ∈ µn}, and [T(cid:101) : Z(T(cid:101))] = n4. Moreover, set A = CT(cid:101)(T(cid:101)∩K(cid:101)) = {(dg(s,t),ζ) | s,t ∈ F×,n|val(s),n|val(t),ζ ∈ µn}. Then, A is a maximal abelian subgroup of T(cid:101) and [T(cid:101) : A] = n2. In addition, β(cid:48)| is trivial, where N is the unipotent radical of B. Hence, we can identify N with N ×{1}. N Under this identification, we have the Levi decomposition: B(cid:101) = T(cid:101)(cid:110)N. It is shown in [11] that the central extension G(cid:101) splits over K. For j ≥ 1, let Kj denote the family of compact open congruent subgroups {g ∈ K | g ≡ I2 mod pj} of K. Similar to Lemma 2, one can show that G(cid:101) splits over Kj, T ∩K and B∩K. 4. Branching Rules for G(cid:102)1 First, we present the construction of the principal series representations of G(cid:102)1 following [13]. Fix a faithful character (cid:15) : µ → C×. A representation of G(cid:102)1 is genuine if the central subgroup µ acts by (cid:15). n n Such representations do not factor through representations of G1. The construction of principal series representations of G(cid:102)1 is based on the essential fact that T(cid:102)1 is a Heisenberg subgroup, and hence its representations are governed by the Stone-von Neumann theorem, which we state here. See [13] for the proof. Theorem 1 (Stone-von Neumann). Let H be a Heisenberg group with center Z(H) such that H/Z(H) is finite, and let χ be a character of Z(H). Suppose that ker(χ)∩[H,H] = {1}. Then there is a unique (up to isomorphism) irreducible representation π of H with central character χ. Let A be any maximal abelian subgroup of H and let χ be any extension of χ to A. Then π ∼= IndHχ . 0 A 0 Note that [T(cid:102)1 : Z(T(cid:102)1)] = n2 < ∞. Let χ be a genuine character of Z(T(cid:102)1), so that χ| = (cid:15). Thus, µn ker(χ)∩[T(cid:102)1,T(cid:102)1] is trivial. Hence Theorem 1 applies: genuine irreducible smooth representations ρ of T(cid:102)1 are classified by genuine smooth characters of Z(T(cid:102)1). Moreover, dim(ρ) = [T(cid:102)1 : A(cid:102)1] = n. Let χ be a fixed extension of χ to A1; so that (ρ,IndT(cid:102)1χ ) is the unique smooth genuine irreducible 0 A1 0 representation of T(cid:102)1 with central character χ. Let us again write ρ for the genuine smooth irreducible representation of T(cid:102)1, with central character χ, extended trivially over N1 to a representation of B(cid:102)1 = T(cid:102)1 (cid:110)N1. Then the genuine principal series representation of G(cid:102)1 associated to ρ is IndG(cid:102)1ρ, where Ind B(cid:102)1 BRANCHING RULES FOR n-FOLD COVERING GROUPS OF SL2 OVER A NON-ARCHIMEDEAN LOCAL FIELD 5 denotes the smooth (non-normalized) induction. In the rest of this section, we decompose Res IndG(cid:102)1ρ K(cid:102)1 B(cid:102)1 into irreducible constituents. We drop the adjective “genuine” for simplicity. Define the character (4) ϑ : F× → µ , a (cid:55)→ ((cid:36),a) . n n Observe that ϑ is ramified of degree one. Set ϑ := ϑ| . Observe that a typical element of A1 can O×2 O×2 be written as (dg(a(cid:36)rn),ζ), and a typical element of T(cid:102)1∩K(cid:102)1 can be written as (dg(a),ζ), where a ∈ O×, r ∈ Z, and ζ ∈ µ . n Lemma 3. Let ρ be the unique irreducible representation of T(cid:102)1 with central character χ. Then Res ρ ∼= A1 (cid:76)n−1χ , where the χ are n distinct characters of A1 defined by i=0 i i χ (dg(a(cid:36)nr),ζ) = χ (cid:0)dg(a(cid:36)nr),ϑ2i(a)ζ(cid:1), i 0 for all a ∈ O×, r ∈ Z, ζ ∈ µ , and 0 ≤ i < n. n Proof. By Theorem 1, ρ ∼= IndT(cid:102)1χ . By Mackey’s theory, Res IndT(cid:102)1χ = (cid:76) IndA1 χ s, where A1 0 A1 A1 0 s∈Sn A1∩sA1 0 S is a complete set of coset representatives for A1\T(cid:102)1/A1. It is not difficult to see that we can choose n S = {(cid:0)dg((cid:36)i),1(cid:1) |0 ≤ i < n}. Since A1 is stable under conjugation by S , IndA1 χ s = χ s. Let n n A1∩sA1 0 0 (dg(a(cid:36)rn),ζ) ∈ A1, and s = (cid:0)dg((cid:36)i),1(cid:1) ∈ S . Then n s−1(dg(a(cid:36)rn),ζ)s = (cid:0)dg((cid:36)−i),((cid:36)i,(cid:36)i) (cid:1)(dg(a(cid:36)rn),ζ)(cid:0)dg((cid:36)i),1(cid:1) n = (cid:0)dg(a(cid:36)rn−i),(a(cid:36)rn,(cid:36)−i) ((cid:36)i,(cid:36)i) ζ(cid:1)(cid:0)dg((cid:36)i),1(cid:1) = (cid:0)dg(a(cid:36)rn),((cid:36)i,a(cid:36)rn−i) (a(cid:36)rn,(cid:36)−i) ((cid:36)i,(cid:36)i) ζ(cid:1) n n n n n = (cid:0)dg(a(cid:36)rn),((cid:36),a)2iζ(cid:1) = (cid:0)dg(a(cid:36)rn),ϑ2i(a)ζ(cid:1). n Hence, χ s((dg(a(cid:36)rn),ζ)) = χ (cid:0)(cid:0)dg(a(cid:36)rn),ϑ2i(a)ζ(cid:1)(cid:1). Denote this character χ . To show that the χ , 0 0 i i 0 ≤ i < n, are distinct, it is enough to show that ϑ2i| = 1 if and only if i = 0. Observe that O× (q−1)2i ϑ2i(a) = a−1 n , which is equal to 1 for all a ∈ O× if and only if n|2i. The result follows. (cid:3) Thecharactersχ definedinLemma3areclearlydistinctwhenrestrictedtoT(cid:102)1∩K(cid:102)1 and, againwriting i χ for these restrictions, i n−1 (cid:77) (5) Res ρ = χ . T(cid:102)1∩K(cid:102)1 i i=0 Proposition 1. Let χ , 0 ≤ i < n, denote also the trivial extension of the characters in (5) to B(cid:102)1∩K(cid:102)1. i Then n−1 Res IndG(cid:102)1ρ ∼= (cid:77)IndK(cid:102)1 χ . K(cid:102)1 B(cid:102)1 B(cid:102)1∩K(cid:102)1 i i=0 Proof. By Mackey’s theorem, we have Res IndG(cid:102)1ρ ∼= (cid:76) IndK(cid:102)1 Res ρx, where X is a K(cid:102)1 B(cid:102)1 x∈X B(cid:102)1x−∩1K(cid:102)1 B(cid:102)1x−∩1K(cid:102)1 completesetofdoublecosetrepresentativesofK(cid:102)1 andB(cid:102)1 inG(cid:102)1. TheIwasawadecompositionK(cid:102)1B(cid:102)1 = G(cid:102)1 impliesthatX = {(I ,1)}andhenceRes IndG(cid:102)1ρ = IndK(cid:102)1 Res ρ.Theresultfollowsfrom(5). (cid:3) 2 K(cid:102)1 B(cid:102)1 B(cid:102)1∩K(cid:102)1 B(cid:102)1∩K(cid:102)1 Hence, in order to calculate the K-types, it is enough to decompose each IndK(cid:102)1 χ , 0 ≤ i < n, into i B(cid:102)1∩K(cid:102)1 irreducible representations. Note that the induction space IndK(cid:102)1 χ is smooth and admissible. Fix i B(cid:102)1∩K(cid:102)1 6 C.KARIMIANPOUR i ∈ {0,··· ,n − 1}. The smoothness of IndK(cid:102)1 χ implies that IndK(cid:102)1 χ = (cid:83) (cid:0)IndK(cid:102)1 χ (cid:1)Kl1. B(cid:102)1∩K(cid:102)1 i B(cid:102)1∩K(cid:102)1 i l≥1 B(cid:102)1∩K(cid:102)1 i Note that, by admissibility, (cid:0)IndK(cid:102)1 χ (cid:1)Kl1 is finite-dimensional for every l ≥ 1 and since K1 is normal B(cid:102)1∩K(cid:102)1 i l in K(cid:102)1, it is K(cid:102)1-invariant. Hence, to decompose IndK(cid:102)1 χ into irreducible constituents, it is enough to i B(cid:102)1∩K(cid:102)1 decompose each (cid:0)IndK(cid:102)1 χ (cid:1)Kl1 into irreducible constituents. i B(cid:102)1∩K(cid:102)1 For any character γ of any subgroup D of T(cid:102)1, we say γ is primitive mod m if m is the smallest strictly positive integer for which Res γ = 1. From now on, let m ≥ 1 be a positive integer such that χ D∩K1 m is primitive mod m. Because 1 + p ⊂ F×n, Z(T(cid:102)1) ∩ K1 = T(cid:102)1 ∩ K1, for all m ≥ 1. Note that since m m χ | = χ, χ | = χ| . Hence, χ is primitive mod m if and only if the χ for 0 ≤ i < n i Z(T(cid:102)1) i T(cid:102)1∩K1 Z(T(cid:102)1)∩K1 i m m are primitive mod m. Set B(cid:102)1 := (B(cid:102)1∩K(cid:102)1)K1. l l Lemma 4. For every 0 ≤ i < n, (cid:40) {0}, 0 < l < m (cid:0)IndK(cid:102)1 χ (cid:1)Kl1 = B(cid:102)1∩K(cid:102)1 i IndK(cid:102)1χ , otherwise. i B(cid:102)1l Proof. Suppose 0 < l < m, and that f is a vector in (cid:0)IndBK(cid:102)(cid:102)11∩K(cid:102)1χi(cid:1)Kl1. Because χi(cid:12)(cid:12)B(cid:102)1∩Kl1 (cid:54)= 1 for l < m, we can choose b ∈ B(cid:102)1∩K1 such that χ (b) (cid:54)= 1. Let g ∈ K(cid:102)1. Note that K1 is normal in K(cid:102)1 and l i l hence g−1bg ∈ K1. On the one hand, f(bg) = χ (b)f(g); on the other hand, f(bg) = f(gg−1bg) = l i (cid:0)g−1bg(cid:1)·f(g) = f(g), since f is fixed by K1. It follows that χ (b)f(g) = f(g). Our choice of b implies l i that f(g) = 0 and because g is arbitrary, f = 0. However, if l ≥ m then χ | = 0 and because K1 i K1 l l is normal in K(cid:102)1, it is not difficult to see that every K1-fixed vector f translates on the left by B(cid:102)1 and l l vice-versa. Hence the result follows. (cid:3) Lemma4tellsusthat, inordertodecompose(IndK(cid:102)1 χi)Kl1 intoirreducibleconstituents, itisenough B(cid:102)1∩K(cid:102)1 todecomposeIndK(cid:102)1χ . Hence,weareinterestedincountingthedimensionofHom (IndK(cid:102)1χ ,IndK(cid:102)1χ ). B(cid:102)1l i K(cid:102)1 B(cid:102)1l i B(cid:102)1l i By Frobenius reciprocity, this latter space is isomorphic to Hom (Res IndK(cid:102)1χ ,χ ). It follows from B(cid:102)1l B(cid:102)1l B(cid:102)1l i i Mackey’s theory that Res IndK(cid:102)1χ ∼= (cid:77)IndB(cid:102)1l χx, B(cid:102)1l B(cid:102)1l i x∈S B(cid:102)1lx−∩1B(cid:102)1l i where S is a set of double coset representatives of B(cid:102)1 \K(cid:102)1/B(cid:102)1 . The set S is a lift to the covering group l l K(cid:102)1 of a similar set of double coset representatives calculated in [16]. Using the latter set, and because µ ⊂ B(cid:102)1 , it is easy to see that n l (6) S = {(I2,1),w(cid:101),l(cid:101)t(x(cid:36)r) | x ∈ {1,ε},1 ≤ r < l}, where ε is a fixed non-square. For 0 ≤ i,j < n, let H be the Hecke algebra i,j H := H(B(cid:102)1 \K(cid:102)1/B(cid:102)1 , χ ,χ ) = {f : K(cid:102)1 → C|f(lgh) = χ (l)f(g)χ (h), l,h ∈ B(cid:102)1 ,g ∈ K(cid:102)1}. i,j l l i j i j l Proposition 2. Let 0 ≤ i,j < n. Then dimHom (IndK(cid:102)1χ ,IndK(cid:102)1χ ) = dimH . K(cid:102)1 B(cid:102)1l i B(cid:102)1l j i,j BRANCHING RULES FOR n-FOLD COVERING GROUPS OF SL2 OVER A NON-ARCHIMEDEAN LOCAL FIELD 7 Proof. On the one hand, observe that Hom (IndK(cid:102)1χ ,IndK(cid:102)1χ ) = (cid:76) Hom (IndB(cid:102)1l χx,χ ), which by Frobenius reciprocity is equal to (cid:76)K(cid:102)1 HomB(cid:102)1l i (B(cid:102)χ1xl,χj ). LetxS∈S be thB(cid:102)e1lset oBf(cid:102)1axll−l∩1xB(cid:102)1∈l Si sujch x∈S x−1 i j i,j B(cid:102)1l ∩B(cid:102)1l that χ (g) = χ (h), whenever h,g ∈ B(cid:102)1 and xgx−1 = h. Then dimHom (IndK(cid:102)1χ ,IndK(cid:102)1χ ) = |S |. i j l K(cid:102)1 B(cid:102)1l i B(cid:102)1l j i,j On the other hand, observe that for every x ∈ S, there exists a function f ∈ H with support on the i,j double coset represented by x if and only if h = xgx−1 implies χ (g) = χ (h) for all h,g ∈ B(cid:102)1 . Moreover, i j l the basis of H is parametrized by such double coset representatives. Hence, dimH = |S |. (cid:3) i,j i,j i,j Hence, in order to decompose (IndK(cid:102)1 χi)Kl1, we are interested in counting the dimension of Hi,i. Set B(cid:102)1∩K(cid:102)1 (T1 ∩K1)2 := {dg(t2) | t ∈ O×}, T1 := {ι(t) | t ∈ O×(1+pl)}, and (T1)2 := {ι(t2) | t ∈ O×(1+pl)}. It l l is not difficult to see that T1 and (T1)2 are subgroups of (T(cid:102)1∩K(cid:102)1)K1. l l l (cid:40) 1+2(l−m), if χ | (cid:54)= 1; Proposition 3. Let l ≥ m and 0 ≤ i < n. Then dimH = i (T1∩K1)2 i,i 2l, otherwise. Proof. Assume l ≥ m. Note that f(bkb(cid:48)) = χ (b)f(k)χ (b(cid:48)) for all f ∈ H , b,b(cid:48) ∈ B(cid:102)1 and k ∈ K(cid:102)1. i i i,i l Hence, for every double coset representative x in (6), there exists a function f ∈ H , with support on i,i the double coset represented by x if and only if bxb(cid:48) = x implies that χ (bb(cid:48)) = 1 for all b,b(cid:48) ∈ B(cid:102)1 . i l The set of such double cosets parameterizes a basis for H . We now determine these double cosets. i,i Let b = (b,ζ) = (cid:0)(cid:0)t s (cid:1),ζ(cid:1), and b(cid:48) = (b(cid:48),ζ(cid:48)) = (cid:0)(cid:0)t(cid:48) s(cid:48) (cid:1),ζ(cid:48)(cid:1), where t,t(cid:48) ∈ O×(1+pl), s,s(cid:48) ∈ pl and 0 t−1 0 t(cid:48)−1 ζ,ζ(cid:48) ∈ µ denote arbitrary elements of B(cid:102)1 . n l The identity coset B(cid:102)1 : Afunctionf ∈ H hassupportonB(cid:102)1 ifandonlyiff(b) = χ (b),∀b ∈ B(cid:102)1 . l i,i l i l So there is always a function with support on the identity coset, namely f = χ . i The coset of w: For b and b(cid:48) in B(cid:102)1 , bwb(cid:48) = w implies, via a quick calculation, that b = b(cid:48) = (cid:101) l (cid:101) (cid:101) dg(t), for some t ∈ O×(1+pl) and ζ(cid:48) = ζ−1. Therefore, χ (bb(cid:48)) = χ (cid:0)(dg(t),ζ)(dg(t),ζ−1)(cid:1) = i i χ (cid:0)dg(t2),(t,t) (cid:1) = χ (cid:0)dg(t2),1(cid:1). So, H contains a function with support on this coset if and i n i i,i (cid:12) only if χi(ι(t2)) = 1 for all t ∈ O×(1+pl); that is if and only if χi(cid:12)(T1)2 = 1. Observe that for (cid:12) l 0 ≤ i < n, χi(cid:12)(T1)2 = 1, where l ≥ m, if and only if χi|(T1∩K1)2 = 1. Suppose χi|(T1∩K1)2 = 1, for l some 0 ≤ i < n. We show that in this case, m = 1. Suppose α ∈ 1+p, consider f(X) = X2−α. Observe that f(1) = 0 mod p, and f(cid:48)(1) = 2(1) (cid:54)= 0 mod p. By Hensel’s lemma, f(X) has a root in O; that is α ∈ O×2. Therefore 1+p ⊂ O×2, which implies χ | = 1, so m = 1. i T(cid:102)1∩K1 1 The coset of l(cid:101)t(x(cid:36)r): For b and b(cid:48) in B(cid:102)1l, bl(cid:101)t(x(cid:36)r)b(cid:48) = l(cid:101)t(x(cid:36)r) implies that tt(cid:48) ∈ 1+pr and ζ = (cid:16) (cid:17) (cid:16) (cid:17) ζ(cid:48)−1. Therefore, χ (bb(cid:48)) = χ (bb(cid:48),1) = χ ( tt(cid:48) ts(cid:48)+st(cid:48)−1 ,1). Note that tt(cid:48) ts(cid:48)+st(cid:48)−1 ∈ B(cid:102)1 ∩K1. i i i 0 t−1t(cid:48)−1 0 t−1t(cid:48)−1 r Hence, χ (bb(cid:48)) = 1 if and only if B(cid:102)1 ∩K1 ⊆ ker(χ ). The latter holds if and only if r ≥ m, since i r i χ is primitive mod m. i Now, let us summarize our result. There is always one function with support on the identity coset, and (cid:12) 2(l−m) functions on cosets represented by l(cid:101)t(x(cid:36)r), x ∈ {1,ε}, m ≤ r < l. If χi(cid:12)(T1∩K1)2 (cid:54)= 1, no function in H has support on the double coset represented by w, otherwise, there exists an additional function i,i (cid:101) in H with support on the double coset represented by w. (cid:3) i,i (cid:101) Next two lemmas elaborate on the condition χ | = 1 that appears in Proposition 3. i (T1∩K1)2 Lemma 5. For each 0 ≤ i < n, χ | = 1 if and only if χ | = (cid:15)◦ϑ−2i . i (T1∩K1)2 0 (T1∩K1)2 O×2 8 C.KARIMIANPOUR Proof. Let ι(s) ∈ (T1∩K1)2, so s ∈ O×2. By Lemma 3, χ (ι(s)) = χ (cid:0)dg(s),ϑ(s)2i(cid:1) = χ (ι(s))(cid:15)(ϑ(s)2i), i 0 0 which is equal to 1 if and only if χ | = (cid:15)◦ϑ−2i . (cid:3) 0 (T1∩K1)2 O×2 Lemma 6. If 4 (cid:45) n then the characters ϑ−2i , 0 ≤ i < n are distinct. Otherwise, the ϑ−2i , 0 ≤ i < n, O×2 O×2 4 are distinct; for n ≤ i < n, ϑ−2i = ϑ−2(i−n4). 4 2 O×2 O×2 (q−1)2i Proof. By definition of ϑ in (4), ϑ−2i(s) = 1 for all s ∈ O×2 if and only if t2 n = 1 for all t ∈ O×, or equivalently when n|4i. Therefore, the equality holds only for i = 0 unless 4|n, in which case the equality holds for both i = 0 and i = n. (cid:3) 4 For l > m, let W(cid:102)i,l denote the l-level representations W(cid:102)i,l := (IndK(cid:102)1 χi)Kl1/(IndK(cid:102)1 χi)Kl1−1. More- B(cid:102)1∩K(cid:102)1 B(cid:102)1∩K(cid:102)1 over, for 0 ≤ i < n, set V(cid:101)i := IndK(cid:102)1 χi. B(cid:102)1∩K(cid:102)1 Corollary 1. Assume l ≥ m. We can decompose Res IndG(cid:102)1ρ as follows: K(cid:102)1 B(cid:102)1 n−1(cid:32) (cid:33) Res IndG(cid:102)1ρ ∼= (cid:77) V(cid:101)Km1 ⊕(cid:77)(cid:16)W(cid:102)+⊕W(cid:102)−(cid:17) , K(cid:102)1 B(cid:102)1 i i,l i,l i=0 l>m where W(cid:102)i+,l ⊕W(cid:102)i−,l ∼= W(cid:102)i,l. All the pieces are irreducible, except when m = 1 and χ0|(T1∩K1)2 = (cid:15)◦ϑ−O2×i2 for some 0 ≤ i < n, in which case, we are in one of the following situations: (1) If 4 (cid:45) n then there is exactly one 0 ≤ i < n for which V(cid:101)K11 decomposes into two irreducible i constituents. All other constituents are irreducible. (2) If 4|n then there are exactly two 0 ≤ i,k < n, |i−k| = n for which V(cid:101)K11 decomposes into two 4 i irreducible constituents. All other constituents are irreducible. Proof. It follows from Lemma 4 and Proposition 3 that for l > m, dimHom(W(cid:102)i,l,W(cid:102)i,l) = 2. Hence, W(cid:102)i,l decomposes into two inequivalent irreducible subrepresentations. Moreover, (cid:40) (cid:12) (7) dimHom(V(cid:101)Km1 ,V(cid:101)Km1 ) = 1, if χi(cid:12)(T1∩K1)2 (cid:54)= 1 i i 2, otherwise. By Lemma 5, χi(cid:12)(cid:12)(T1∩K1)2 = 1 is equivalent to χ0|(T1∩K1)2 = (cid:15)◦ϑO−2×i2, which also implies that m = 1. Hence, V(cid:101)iKm1 is irreducible except when m = 1 and χ0|(T1∩K1)2 = (cid:15)◦ϑO−2×i2, where it decomposes into two irreducible constituents. If the latter is the case, by Lemma 6, there is exactly one 0 ≤ i < n satisfying χ | = (cid:15)◦ϑ−2i if 4 (cid:45) n, and there are exactly two 0 ≤ i < n satisfying χ | = (cid:15)◦ϑ−2i if 0 (T1∩K1)2 O×2 0 (T1∩K1)2 O×2 4|n. (cid:3) Next we determine the multiplicity of each constituent in the decomposition in Corollary 1. To do so, (cid:16) (cid:17) we count the dimension of Hom IndK(cid:102)1χ ,IndK(cid:102)1χ , which is equal to the dimension of the Hecke K(cid:102)1 B(cid:102)1l k B(cid:102)1l i algebra H = H(B(cid:102)1 \K(cid:102)1/B(cid:102)1 ,χ ,χ ). k,i l l k i Proposition 4. Let l ≥ m, 0 ≤ k,i < n, and i (cid:54)= k. Then (cid:40) −(k+i) 2l−1, if χ | = (cid:15)◦ϑ dimH = 0 (T1∩K1)2 O×2 k,i 2(l−m), otherwise. BRANCHING RULES FOR n-FOLD COVERING GROUPS OF SL2 OVER A NON-ARCHIMEDEAN LOCAL FIELD 9 Proof. Similar to the proof of Proposition 3, we determine which double cosets in B(cid:102)1 \K(cid:102)1/B(cid:102)1 support a l l function in H . For every double coset representative x in Lemma (6), there exists a function f ∈ H k,i k,i with support on the double coset represented by x if and only if bxb(cid:48) = x, b,b(cid:48) ∈ B(cid:102)1 , implies that l χ (b)χ (b(cid:48)) = 1. Let t,t(cid:48) ∈ O×(1+pl), s,s(cid:48) ∈ pl and ζ,ζ(cid:48) ∈ µ , so that b = (b,ζ) = (cid:0)(cid:0)t s (cid:1),ζ(cid:1) and k i n 0 t−1 b(cid:48) = (b(cid:48),ζ(cid:48)) = (cid:0)(cid:0)t(cid:48) s(cid:48) (cid:1),ζ(cid:48)(cid:1) are arbitrary elements of B(cid:102)1 . 0 t(cid:48)−1 l Because χ (cid:54)= χ , there is no function in H with support on the identity double coset. k i k,i For the double coset of w, bwb(cid:48) = w implies that b = b(cid:48) = dg(t), for some t ∈ O×(1+pl) and ζ(cid:48) = ζ−1. (cid:101) (cid:101) (cid:101) Therefore, χ (b)χ (b(cid:48)) = χ (dg(t),ζ)χ (cid:0)dg(t),ζ−1(cid:1) equals k i k i (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) χ dg(t),ϑ(t)2kζ χ (cid:0)dg(t),ϑ(t)2iζ−1(cid:1) = χ dg(t2),ϑ(t)2(k+i) = χ ι(t2)(I ,ϑ(t2)k+i) 0 0 0 0 2 (cid:16) (cid:17) = χ (cid:0)ι(t2)(cid:1)(cid:15) ϑ(t2)k+i . 0 Therefore, because l ≥ m, χ (b)χ (b(cid:48)) = 1 if and only if χ | = (cid:15)◦ϑ−(k+i). In this case, m = 1 k i 0 (T1∩K1)2 O×2 and w supports a function in H . (cid:101) k,i Finally, for the double cosets represented by l(cid:101)t(x(cid:36)r), x ∈ {1,ε}, 1 ≤ r < l, b l(cid:101)t(x(cid:36)r)b(cid:48) = l(cid:101)t(x(cid:36)r) implies that ζ(cid:48) = ζ−1, and t+s(cid:36)r = t(cid:48)−1 mod pl, or equivalently, t = t(cid:48)−1 mod pr, and t−1(cid:36)r = (cid:36)rt(cid:48)−1 mod pl, or equivalently t−1 = t(cid:48)−1 mod pl−r. Observe that, in general, χ (b)χ (b(cid:48)) is equal to k i (cid:16) (cid:17) (cid:16) (cid:17) (8) χ (dg(t),ζ)χ (cid:0)dg(t(cid:48)),ζ(cid:48)(cid:1) = χ dg(t),ϑ(t)2kζ χ (cid:0)dg(t(cid:48)),ϑ(t(cid:48))2iζ(cid:48)(cid:1) = χ dg(tt(cid:48)),ϑ(t)2kϑ(t(cid:48))2iζζ(cid:48) k i 0 0 0 (cid:16) (cid:17) = χ (cid:0)ι(tt(cid:48))(cid:1)(cid:15) ϑ(t)2kϑ(t(cid:48))2iζζ(cid:48) . 0 Note that ϑ is primitive mod one. Observe that r ≥ 1 and l −r ≥ 1. Therefore, t = t(cid:48)−1 mod p and t = t(cid:48) mod p, which implies that t = t(cid:48) = α mod p where α ∈ {±1}. Hence, ϑ(t)2 = ϑ(t(cid:48))2 = 1, and (8) simplifies to χ (ι(tt(cid:48)))(cid:15)(ζζ(cid:48)). We are in one of the following situations: 0 Case 1: Suppose r ≥ m. Then we have ζ(cid:48) = ζ−1, and t = t(cid:48)−1 mod pm; that is tt(cid:48) ∈ 1+pm. Hence, χ (ι(tt(cid:48)))(cid:15)(ζζ(cid:48)) = χ (tt(cid:48)) = 1, because χ is primitive mod m. Therefore, in this case, there is 0 0 0 always a function in H with support on these double cosets. k,i Case 2: Suppose r < m. Then ζ(cid:48) = ζ−1, so χ (ι(tt(cid:48)))(cid:15)(ζζ(cid:48)) = χ (tt(cid:48)), which equals one if and only 0 0 if tt(cid:48) ∈ 1+pm, which is not the case in general. Hence, in this case, there is no function in H k,i with support on these double cosets. Tosummarizetheresult,thecosetrepresentedbywsupportsafunctioninH ifandonlyifχ | = (cid:101) k,i 0 (T1∩K1)2 (cid:15)◦ϑ−(k+i). If r ≥ m then the cosets represented by lt(x(cid:36)r) support a function in H ; otherwise, there O×2 k,i is no function in H with support on these double cosets. (cid:3) k,i Corollary 2. In the decomposition of Res IndG(cid:102)1ρ given in Corollary 1, K(cid:102)1 B(cid:102)1 (1) For each 0 ≤ i < n and l > m, there exists a way of decomposing W(cid:102)i,l as W(cid:102)i+,l⊕W(cid:102)i−,l such that for l > m, W(cid:102)+ ∼= W(cid:102)+ and W(cid:102)− ∼= W(cid:102)− for all 0 ≤ i,j < n. i,l j,l i,l j,l (2) For l = m, {(IndK(cid:102)1 χi)Km1 | 0 ≤ i < n} consists of mutually inequivalent representations, B(cid:102)1∩K(cid:102)1 except when m = 1 and χ0|(T1∩K1)2 = (cid:15)◦ϑ−Oj×2, for some 0 ≤ j < n, where V(cid:101)iK11 ∼= V(cid:101)kK11, exactly when i+k ≡ j mod n. 10 C.KARIMIANPOUR (cid:16) (cid:17) Proof. It follows from Proposition 4 that for l > m, dimHomK(cid:102)1 W(cid:102)i,l,W(cid:102)k,l = 2, and when i+k ≡ j mod n (cid:40) (cid:16) (cid:17) 1, χ | = (cid:15)◦ϑ−j dimHom V(cid:101)Km1 ,V(cid:101)Km1 = 0 (T1∩K1)2 O×2 K(cid:102)1 i k 0, otherwise, and hence the result. (cid:3) In order to further investigate the irreducible spaces W(cid:102)i+,l and W(cid:102)i−,l, we will show that W(cid:102)i,l, 0 ≤ i < n, is the restriction to K(cid:102)1 of an irreducible representation of the maximal compact subgroup K(cid:101) of the covering group G(cid:101) of GL2(F). 5. Branching Rules for G(cid:101) We define the genuine principal series representations of G(cid:101) similarly by starting with a genuine smooth irreducible representation ρ(cid:48) of T(cid:101) with the central character χ(cid:48), which is constructed via the Stone-von Neumann theorem. Observe that dimρ(cid:48) = [T(cid:101) : A] = n2. Then, after extending ρ(cid:48) trivially over N, the genuine principal series representation π(cid:48) of G(cid:101) is IndG(cid:101)ρ(cid:48). Applying a similar machinery as in Section 4, B(cid:101) we obtain the K-type decomposition for Res π(cid:48). Since the argument in Section 4 goes through almost K(cid:101) exactly, here we only overview the main steps and point out the differences. For detailed calculations, see [8]. Similar to Lemma 3, it follows that Res ρ(cid:48) ∼= (cid:76)n−1 χ(cid:48) , where the χ(cid:48) denote n2 distinct characters A i,j=0 i,j i,j of A, defined by χ(cid:48) (dg(a(cid:36)un,b(cid:36)vn),ζ) = χ(cid:48) (cid:0)dg(a(cid:36)un,b(cid:36)vn),ϑ(a)−jϑ(b)−iζ(cid:1) where a,b ∈ O×, u,v ∈ Z i,j 0 and ζ ∈ µ and ϑ(a) = ((cid:36),a) was defined in (4), and χ(cid:48) is a fixed extension of χ(cid:48) to A. The χ(cid:48) remain n n 0 i,j distinct when restricted to T(cid:101)∩K(cid:101), and again writing χ(cid:48) for there restrictions, Res ρ(cid:48) ∼= (cid:76)n−1 χ(cid:48) . i,j T(cid:101)∩K(cid:101) i,j=0 i,j Then similar to Proposition 1, we have Res (IndG(cid:101)ρ(cid:48)) ∼= (cid:76)n−1 IndK(cid:101) χ(cid:48) . This latter isomorphism K(cid:101) B(cid:101) i,j=0 B(cid:101)∩K(cid:101) i,j reduces the problem of decomposing the K-type to the one of decomposing each IndK(cid:101) χ(cid:48) , which, by B(cid:101)∩K(cid:101) i,j smoothness, can be written as the union of its K , l ≥ 1, fixed points. l Suppose χ(cid:48) is primitive mod m. It follows that the χ(cid:48)i,j are also primitive mod m. Set B(cid:101)l = (B(cid:101)∩K(cid:101))Kl. (cid:16) (cid:17)K It can be seen that each level l representation IndK(cid:101) χ(cid:48) l = IndK(cid:101) χ(cid:48) if l ≥ m, and is zero if l < m. B(cid:101)∩K(cid:101) i,j B(cid:101)l i,j SimilartoProposition2,onecanseethatdimHomK(cid:101)(IndKB(cid:101)(cid:101)lχ(cid:48)i,j,IndKB(cid:101)(cid:101)lχ(cid:48)i,j) = dimH(cid:48)i,j(B(cid:101)l\K(cid:101)/B(cid:101)l,χ(cid:48)i,j,χ(cid:48)i,j). We count the dimension of H(cid:48) using a method similar to the one we used in Proposition 3. To do so, i,j we need to calculate a set of double coset representatives of B(cid:101)l in K(cid:101). Lemma 7. A complete set of double coset representatives of B(cid:101)l in K(cid:101) is given by {(I2,1),w(cid:101),l(cid:101)t((cid:36)r) | 1 ≤ r < l}. Proof. Note that this set is a subset of the set S in (6). Observe that under the isomorphism (9) F×(cid:110)G(cid:102)1 ∼= G(cid:101), (y,(g,ζ)) (cid:55)→ (dg(1,y)g,ζ), O× ×K(cid:102)1 maps to K(cid:101) and O× ×B(cid:102)1l maps to B(cid:101)l. For every k(cid:48) ∈ K(cid:101), let (y,k) be the inverse image of k(cid:48) under the isomorphism (9), and let b ,b ∈ B(cid:102)1 be such that b xb = k, for some x ∈ S. Let b(cid:48) and b(cid:48) 1 2 l 1 2 1 2 be the image of (y,b ) and (y,b ) under (9) respectively. It follows from the multiplication of F× (cid:110)G(cid:102)1 1 2 and the isomorphism map (9), that b(cid:48)1xb(cid:48)2 = k(cid:48). Thus, K(cid:101) = (cid:83)x∈SB(cid:101)lxB(cid:101)l. A short calculation shows that (cid:0)dg(ε−1,1),1(cid:1)l(cid:101)t((cid:36)r)(dg(ε,1),1) = (lt(ε(cid:36)r),((cid:36)r,ε)n(ε,(cid:36)r)n) = l(cid:101)t(ε(cid:36)r),