ebook img

Branching Processes PDF

468 Pages·1983·7.239 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Branching Processes

Progress in Probability and Statistics Voi. 3 Edited by Peter Huber Murray Rosenblatt Springer Science+Business Media, LLC S. Asmussen H. Hering Branching Processes 1983 Springer Science+Business Media, LLC Authors: Sj!lren Asmussen Institute of Mathematical Stochastik University of Copenhagen 5, Universitetsparken 2100 Copenhagen ~. Denmark Heinrich Hering Institut ffir Mathematische Statistik Universit~t Gtlttingen Lotzestr. 13 3400 Gtlttingen, West Germany CIP-Kurztitelaufnahme der Deutschen Bibliothek Asmussen, Sj!lren: Branchina nrocesses 1 S. Asmussen ; H. Hering. - Boston ; Basel ; Stuttgart ; Birkhauser, 1983. (Progress in probability and statistics ; Vol. 3) ISBN 978-0-8176-3122-2 ISBN 978-1-4615-8155-0 (eBook) DOI 10.1007/978-1-4615-8155-0 NE Hering, Heinrich: ; GT Library of Congress Cataloging in Publication Data Asmussen, Sl!lren. Branching processes. (Progress in probability and statistics ; V. 3) Bibliography: 1. Branching processes. I. Hering, H. (Heinrich), 1940- . II. Title. III. Seri es. QA274.76.A78 1983 519.2'34 82-22704 ISBN 978-0-8176-3122-2 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright owner. © Springer Science+Business Media New York 1983 Originally published by Birkhäuser Boston in 1983 Softcover reprint of the hardcover 1st edition 1983 ISBN 978-0-8176-3122-2 V TABLE OF CONTENTS PART A: INTRODUCTION Chapter I: Branching phenomena and models 1. Simple branching processes ................................ 2 2. p-type processes 7 3. Age dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4. General processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Bibliographical notes ..................................... 16 PART B: SIMPLE BRANCHING PROCESSES Chapter II: The Galton-Watson process: Probabilistic methods 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2. The Kesten-Stigum theorem ................................. 23 3. Finer limit theorems: Finite offspring variance .......... 28 4. Finer limit theorems: Infinite offspring variance ........ 36 5. The Seneta-Heyde theorem .................................. 43 6. Immigration •.............................................. 50 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Chapter III: The Galton-Watson process: Analytic methods 1. Subcritical processes: Yaglom's theorem ..............•... 56 2. Arbitrary initial distributions and invariant measures ... 65 3. Critical processes: The exponential limit theorem ........ 74 4. Local limit theorems for critica1 processes ...........•.. 78 5. Supercritical processes: Basic convergence result ........ 83 6. Further properties of the limiting distribution .......... 89 7. Local limit theorem for supercritical processes .......... 97 8. Immigration .............................................• 106 Bibliographical notes .................................... 113 Chapter IV: Continuous time Markov branching processes 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2. Generating functiona in continuous time ..................1 19 3. The method of discrete skeletons ........................ 127 4. Split times .............................................. 132 Bib1iographical notes .................................... 136 vi PART C: MULTIGROUP BRANCHING DIFFUSIONS ON BOUNDED DOMAINS Chapter V: Foundations 1. Existence and construction 138 2. Generating functionala and moments ....................... 149 3. Examples .................................................. 163 4. Equivalence of moment conditiona ......................... 176 Bibliographical notes .................................... 182 Chapter VI: Limit theory for subcritical and critical processes 1. Subcritical processes with initial distribution concentra- ted at one point .......................................... 184 2. Subcritical processes with arbitrary initial distributions and invariant measures ................•................... 193 3. Critical processes with finite second moment parameter ... 200 4. Critical processes with infinite second moment parameter . 207 5. Critical processes without proper conditiona! limit 218 6. Subcritical and critical processes with immigration ...... 226 Bibl.iographica:r. notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Chapter VII: Basic limit theory for supercritical processes 1. Extinction probability and transience .................... 242 2. Normal.izing constanta .................................... 249 3. Extinction and transience continued ...................... 257 4. Properties of the limiting distribution .................. 263 5. Almost sure convergence with general test functiona ...... 269 6. Supercritical processes with immigration ................. 279 Bibliographical notes ..................................... 288 Chapter VIII: More on the limiting behaviour of linear functionala 1. Introduction 290 2. Interlude on the Jordan canonical form ................... 293 3. Introduction continued ................................... 296 4. Interlude on second moments .............................. 299 5. Expl.oiting the additivity property ....................... 305 6. Expl.oiting martingales: A central limit theorem for trian- gular arrays ................................................. 313 7. Exploiting martingales: The increasing procesa and the central limit theorem for linear functionala ............. 316 vii 8. Exploiting martingale exponential inequalities ••.••.•.••• 321 9. The 1aw of the iterated logarithm in the case A2=P 328 10. The case A2>p •••••••••••••••••••••••••••••••••••••••••• 331 11. An example from asymptotic estimation theory .....•••..••. 334 12. Continuous time •.•••.••..•••••.•••.•.•••..•.•••••••.•.••• 337 13. Infinite variance •.•......•.....••••••.....••.••.••...•.• 343 Bibliographical notes ..•.•.••••••••••..•.•.•....•...••••• 346 PART D: RELATED MODEIS Chapter IX: Unbounded domains 1. The branching Ornstein-Uhlenbeck processes ..•.••.•••.••.• 348 2. Branching Brownian motion ............•....•.••.••.••...•.. 354 Bibliographical notes ..•..••...••..••....••...•...••...•. 359 Chapter X: Generalized age-dependence and random characteristics 1. Introduction . . . • • • • . . • • • • . . • • • • • . • • . • . . . . . • • . . • • . • • . . . • • • 362 2. Renewa1 techniques ......•....•••...•••.....•...••••...•.• 364 3. Age-dependence, the stable age-distribution, and the reproductiva value ...•.•.•.•.•••..•...•••...•..•....•..•• 366 4. Martingales and a theorem ot Kesten-Stigum type .......••. 371 5. Empirical ratio limit theorems in the supercritical case. 375 6. The subcritical case ...••.......•......•...•......••••••• 380 7. The erit i cal case •••••..••...•...•..••...••.••...•.•••••• 387 8. Multitype generalizations .••....••.•...•..•••.••.••.....• 398 Bibliographical notes .••..•..•.••..•••••......•••..••.•• 402 Chapter XI: Two-sex modela 1. Modela and examples . • . . . . . . • • . . . • • . . . . . • . • . . • . . . • . . • • • • • • 404 2. Limit theorems for non-overlapping generations ..•.....•• 409 3. Limit theorems for overlapping generations: The determi nistic differential equations ....••.•.......•....••..••. 415 4. Limit theorems for overlapping generations: The pure birth procesa 420 Bibliographical notes 427 APPENDIX 1. The conditiona! Borel-Cantelli lemma .•.....••...•.•...••• 430 2. Martingale convergence theorems ...••.•.....••..••.••..••. 431 viii 3. Uniform integrability ................................... 432 4. Series with independent terms ........................... 433 5. Summation by parts ....................................... 433 6. Maximal inequa li ties • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 4 7. Results related to the LIL .............................. 435 8. The martingale CLT ...................................... 438 9. The Croft-Kingman lemma ................................. 438 10. Results related to the LNN ............................... 439 11 • A result of Anscombe-Renyi type .......................... 441 12. A weak LLN rate of convergence result • •••••••••••••••••• 4 44 13. Slowly or regularly varying functions • ••••••••••••••••• 445 14. Tauberian theorems ...................................... 450 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 54 FIRST APPEARANCE OF SPECIALLY MARKED RELATIONS: (F. 1) , (F.2) page 139 (IF) 147 ( U1) 155 (]V[) 156 (FM) 159 (RM) 159 (R) 160 ( c) ' (C*) 160 ( T. 1) - (T.5) 164, 165 ( s) 207 ix PREFACE Branching processes form one of the classical fields of applied probability and are still an active area of research. The field has by now grown so large and diverse that a complete and unified treat ment is hardly possible anymore, let alone in one volume. So, our aim here has been to single out some of the more recent developments and to present them with sufficient background material to obtain a largely self-contained treatment intended to supplement previous mo nographs rather than to overlap them. The body of the text is divided into four parts, each of its own flavor. Part A is a short introduction, stressing examples and applications. In Part B we give a self-contained and up-to-date pre sentation of the classical limit theory of simple branching processes, viz. the Gal ton-Watson ( Bienayme-G-W) process and i ts continuous time analogue. Part C deals with the limit theory of Il!arkov branching processes with a general set of types under conditions tailored to (multigroup) branching diffusions on bounded domains, a setting which also covers the ordinary multitype case. Whereas the point of view in Parts A and B is quite pedagogical, the aim of Part C is to treat a large subfield to the highest degree of generality and completeness possi"ble. Thus the exposition there is at times quite technical. Part D concerns simple branching diffusions on unbounded domains, age dependent processes and their generalizations to models in which the individuals have completely unrestricted reproduction patterns, and finally models in which different individuals cooperate in producing offspring. For easier reference a number of auxiliary results and tools we use are compiled in an Appendix. To each chapter there is a section with bibliographical comments. They record our immediate sources without giving a complete history of the subject. Similarly, the list of references at the end of the book is not encyclopedic, but is restricted to those publications we explicitly quote in the text or the comments. Topics not covered could easily fill a second volume. Among them are processes with random or deterministically varying environment, decomposable processes ( except for some results on immigration ), the whole complex of diffusion approximations, continuous-state or, more gencrally, Borel measure-valued processes, models with infini tely many particles, or the scarcely developed field of controlled

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.