Jorge Angeles, Benoit Boulet, James J. Clark, József Kövecses, and Kaleem Siddiqi (Eds.) Brain, Body and Machine Proceedings of an International Symposium on the Occasion of the 25th Anniversary of the McGill University Centre for Intelligent Machines ABC Editors Prof.JorgeAngeles Prof.JózsefKövecses DepartmentofMechanicalEngineering& DepartmentofMechanicalEngineering& CentreforIntelligentMachines CentreforIntelligentMachines McGillUniversity McGillUniversity 817SherbrookeSt.W. 817SherbrookeSt.West Montreal,Quebec Montreal,Quebec CanadaH3A2K6 CanadaH3A2K6 E-mail:[email protected] E-mail:[email protected] Prof.BenoitBoulet Prof.KaleemSiddiqi DepartmentofElectricaland SchoolofComputerScience& ComputerEngineering& CentreforIntelligentMachines CentreforIntelligentMachines McGillUniversity McGillUniversity 3480UniversityStreet 3480UniversityStreet Montreal,QC Montreal,Quebec CanadaH3A2A7 CanadaH3A2A7 E-mail:[email protected] E-mail:[email protected] Prof.JamesClark DepartmentofElectricaland ComputerEngineering& CentreforIntelligentMachines McGillUniversity 3480UniversityStreet Montreal,Quebec CanadaH3A2A7 E-mail:[email protected] ISBN978-3-642-16258-9 e-ISBN978-3-642-16259-6 DOI10.1007/978-3-642-16259-6 AdvancesinIntelligentandSoftComputing ISSN1867-5662 LibraryofCongressControlNumber:2010937343 (cid:2)c 2010Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember 9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliableforprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names,registered names,trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Typeset&CoverDesign:ScientificPublishingServicesPvt.Ltd.,Chennai,India. Printedonacid-freepaper 543210 springer.com Preface The Centre for IntelligentMachines(CIM), McGill University,was officially cre- atedonNovember13th,1985,uponapprovalbytheUniversitySenate.Themission of the centre is, since its inception, “to excel in the field of intelligent systems, stressing basic research, technology development and education.” Intelligent ma- chinesareunderstood,alongtheselines,assystems“capableofadaptingtheirgoal- orientedbehaviorbysensingandinterpretingtheirenvironment,makingdecisions andplans,andthen carryingoutthoseplansusingphysicalactions.”Researchac- tivitiesofinteresttoCIMincluderobotdesign,mechanicalsystemdynamics,robot control,computervision,visualperception,medicalimaging,haptics,systemtheory andapplications,andvirtualenvironments.Thesefieldscanbesuccinctlydescribed bythetitleoftheinternationalsymposiumrecordedinthisbook,Brain,Bodyand Machine(BBM). CIM’sobjectofresearchisthusreflectedinthebook,wherereaderswillfindthat mostpaperscoveratleasttwoofthethreemainthrusts.Papersreflectthestate-of- the-artofthemultidisciplineofintelligentmachines,nowadayshighlydiversified.A broadspectrumofapplicationsiscovered,fromhumanoidrobotsandautonomous planetaryrovers,toinnovativeproceduresandsystemsforshape-reproductionand onto systemsor devicesformedicaldiagnosis.Applicationsareallgearedto one commongoal,abetterqualityoflifeforhighlychallengedpatientsorsimplyforthe healthy individual. Methods to face the challenges include not only sophisticated deterministicalgorithms,butalsotheirheuristiccounterparts,attherootsofwhatis knownassoftcomputing. The readerwill find here paperson human-robotinteraction as well as human- safety algorithms;haptic interfaces;innovativeinstrumentsand algorithmsfor the sensing of motion and the identification of brain neoplasms; even a paper on a saxophone-playingrobot. VI Preface In its first 25 years, CIM has produced hundreds of graduates at the Master’s, Ph.D. andpostdoctorallevels. These alumnaeandalumniare now successfulpro- fessors,researchers,developersandmanagerswhoareattheforefrontofmanyin- dustries,andentrepreneursandbusinessdevelopers.CIM’sgraduates,moreover,are distributedallovertheworld.ThisrichdistributionmadetheInternationalSympo- siumonBrain,BodyandMachinepossible. Montreal, TheEditors August2010 JorgeAngeles BenoitBoulet JamesJ.Clark Jo´zsefKo¨vecses KaleemSiddiqi Acknowledgements McGill University’sCentre for IntelligentMachines (CIM) is the productof a vi- sionary,ProfessorPierreBelanger,whostartedpromotingtheideaasChairmanof ElectricalEngineeringintheearlyeighthies.Hegatheredagroupofcolleaguesin hisdepartment,in the Schoolof ComputerScience andin the DepartmentofMe- chanicalEngineering,inaneffortthatculminatedwiththecreationof“thecentre” on November 13, 1985. Since 2007, CIM has been stregthened by the financial and strategic support provided by Quebec’s Fonds de recherche sur la nature et les technologiesvia a grantto the Regroupementstrate´gique pour l’e´tude des en- vironnementspartage´sintelligents re´partis (RE´PARTI), a network of five Quebec universitiessharingthesame researchinterestsasMcGillin thedomainofintelli- gentsystems.Infact,RE´PARTIhasenhancedCIM’snetworkingactivitiesbeyond QuebecandCanada. Forthesuccessfulcelebrationofthefirst25yearsofCIM,weareindebtedtothe DeansofEngineering,Prof.ChristophePierre,andofScience,Prof.MartinGrant, totheChairmenofElectricalandComputerEngineering,Prof.DavidPlant,andof MechanicalEngineering,GeorgeHaller,aswellastotheDirectoroftheSchoolof ComputerScience,Prof.GregoryDudek,whosupportedandencouragedoureffort. ThelogisticsupportprovidedbyJanBinder,SystemsManager,notonlyduringthe celebration,butalsoduringmostofthepast25years,hasplayedadecisiverolein makingofCIMasuccessstory.MarleneGray,Manager,CynthiaDavidson,Secre- tary,andPatrickMcLean,SystemsAdministrator,haveprovidedexcellentsupport in keepingthe centrerunningthroughoutthe years,andcertainlyduringthiscele- bratory year. The celebration activities have run through the year, with six public seminars and one Beatty Lecture, given by prominent researchers in the areas of brain,bodyandmachine. Last,butnotleast,theEditorswanttoacknowledgethosewhoparticipatedinthe productionofthisbook:allCIMmembers,whocomposedtheTechnicalCommit- tee of the InternationalSymposium on Brain, Body and Machine; the anonymous reviewerswho providednot only their expertise, but also their precioustime; and the key role playedby Dr. SeyedhosseinHajzargarbashi,the managerof the sym- posiumwebsite.Alltheseindividualscontributedtosecuringahighqualityofour finalproduct:thisbook. Contents ForceandVisualControlforSafeHuman-RobotInteraction........... 1 BrunoSiciliano,LuigiVillani,VincenzoLippiello,AgostinoDeSantis 1 Introduction .............................................. 1 2 Modeling ................................................ 2 2.1 HumanUser ....................................... 3 2.2 Environment ....................................... 4 2.3 Robot............................................. 5 2.4 Camera ........................................... 5 3 UseofVision,ForceandJointPositionsMeasurements.......... 6 3.1 Vision............................................. 6 3.2 Force ............................................. 7 3.3 JointPositions...................................... 7 4 Vision-BasedPoseEstimation............................... 8 4.1 HumanOperator’sPoseEstimation .................... 8 4.2 ObjectPoseEstimation .............................. 8 5 InteractionControl ........................................ 9 5.1 HybridForce/PositionControl ........................ 10 5.2 ImpedanceControl.................................. 11 6 CaseStudies.............................................. 12 6.1 InteractionwithanObject............................ 13 6.2 Vision-BasedHeadAvoidance ........................ 14 7 Conclusions .............................................. 15 References.................................................... 16 3DAutomaticSegmentationoftheHippocampusUsing WaveletswithApplicationstoRadiotherapyPlanning ................. 17 YiGao,BenjaminW.Corn,DanSchifter,AllenTannenbaum 1 Introduction .............................................. 18 2 MethodandMaterials ..................................... 20 2.1 ShapeLearning .................................... 21 2.2 ShapeBasedSegmentation .......................... 23 X Contents 2.3 ShapeInitialization ................................. 24 2.4 DataDrivenSegmentation............................ 24 2.5 ShapeFilteringwithShapePrior ...................... 25 2.6 SeparationoftheHippocampusandAmygdala .......... 26 3 Results .................................................. 26 3.1 HippocampusandAmygdalaSegmentationResults ...... 27 3.2 SegmentationResultsShownbySlices ................. 27 3.3 DistanceonMesh................................... 28 3.4 FurtherQuantitativeAnalysis ......................... 29 4 Discussion ............................................... 30 References.................................................... 30 RigidRegistrationof3DUltrasoundandMRI:Comparing TwoApproachesonNineTumorCases............................... 33 LaurenceMercier,VladimirFonov,RolandoF.DelMaestro, KevinPetrecca,LasseR.Østergaard,D.LouisCollins 1 Introduction .............................................. 33 2 MaterialsandMethods ..................................... 35 2.1 ClinicalData....................................... 35 2.2 Pseudo-ultrasoundGeneration ........................ 35 2.3 NormalizedMutualInformationTechnique ............. 37 2.4 RigidBodyRegistration ............................. 37 2.5 RegistrationValidation .............................. 38 3 Results .................................................. 38 4 Discussion ............................................... 40 5 Conclusions .............................................. 41 References.................................................... 41 ANewApproachtoVirtualMirroringforView Integration ....................................................... 45 CarmenE.Au,JamesJ.Clark 1 Introduction .............................................. 45 1.1 VirtualMirroringTechnique .......................... 47 2 NewVMApproach........................................ 50 2.1 MakingaTrueVirtualMirror ......................... 50 2.2 AlgorithmforGeneralizedTechnique .................. 52 3 ResultingCompositeImagesforNewVMApproach............ 53 4 LimitationsandFutureWorks ............................... 54 References.................................................... 54 DesigningaMetricfortheDifferencebetweenGaussianDensities ...... 57 KarimT.Abou–Moustafa,FernandoDeLaTorre,FrankP.Ferrie 1 Introduction .............................................. 57 2 RelatedWork............................................. 59 3 DivergencesandDistancesforProbabilityDistributions ......... 60 Contents XI 3.1 DistancesandDivergencesforGaussianDensities........ 61 3.2 ACloseLookatd andd .......................... 62 KL B 4 DesigningaMetricforGaussianDensities .................... 62 4.1 AMetricforSymmetricandPositiveSemi–definite Matrices........................................... 63 4.2 TheProposedMetricdG ............................. 63 4.3 AKernelBasedondG ............................... 64 5 ExperimentalResults ...................................... 65 5.1 SupervisedDiscriminativeDimensionalityReduction..... 66 5.2 UnsupervisedClusteringofImages .................... 67 References.................................................... 69 PhysicalAsymmetriesandBrightnessPerception ..................... 71 JamesJ.Clark 1 Introduction-IsItDarkorBright? ........................... 71 2 PhysicalAsymmetriesUnderlyingBrightnessPerception ........ 72 2.1 BreakdownoftheLight-DarkRangeAsymmetryDue toSaturation ....................................... 73 2.2 OtherAsymmetries ................................. 74 3 StatisticalMeasuresofSceneBrightness ...................... 75 4 SurroundEntropyinNaturalImages.......................... 78 5 Summary ................................................ 81 References.................................................... 81 ALearning-BasedPatientRepositioningMethodfrom Limited-AngleProjections.......................................... 83 Chen-RuiChou,C.BrandonFrederick,ShaX.Chang, StephenM.Pizer 1 Introduction .............................................. 84 2 ImagingGeometries ....................................... 85 2.1 NanotubeStationaryTomosynthesis(NST) ............. 86 2.2 Limited-AngleCone-BeamCT(CBCT) ................ 86 3 Method.................................................. 86 3.1 TheTrainingStage.................................. 86 3.2 TheTreatmentStage ................................ 87 3.3 HierarchicalTrainings ............................... 88 4 Results .................................................. 89 4.1 TestEnvironments .................................. 89 4.2 TestsonOblique-AngleNSTandLimited-AngleCBCT... 90 5 DiscussionandConclusion ................................. 93 References.................................................... 94 XII Contents ImageandVideoRegionSaliencyBasedonSpaceandMotion.......... 95 JianLi,MartinLevine,XiangjingAn,ZhenpingSun,HangenHe 1 Introduction .............................................. 95 2 TheMethodology ......................................... 97 2.1 SuppressingRepeatingPatternsforSaliency Pop-Out........................................... 97 2.2 TheSaliencyMap................................... 101 2.3 ComputingtheVideoSaliencyMap ................... 103 3 Experiments.............................................. 104 3.1 SaliencyDetectionin1-DSignalsand2-DPatterns....... 104 3.2 SaliencyDetectioninNaturalImages .................. 105 3.3 ComputingVideoSaliencyMaps ..................... 106 4 Discussion ............................................... 108 References.................................................... 109 GeneralizedPCAviatheBackwardStepwiseApproachin ImageAnalysis.................................................... 111 SungkyuJung,XiaoxiaoLiu,J.S.Marron,StephenM.Pizer 1 Introduction .............................................. 111 2 ForwardandBackwardStepwiseViewofPCA................. 113 2.1 MathematicalDevelopmentforEuclideanPCA .......... 113 2.2 PCAApproachesforManifoldData ................... 115 3 Method.................................................. 116 3.1 PrincipalNestedSpheres............................. 117 3.2 ApplicationofPNStoScaledPointDistribution Models............................................ 119 3.3 ExperimentalResults................................ 120 4 Conclusion............................................... 122 References.................................................... 123 PerformanceofMRF-BasedStereoAlgorithmsforClutteredScenes .... 125 FahimMannan,MichaelLanger 1 Introduction .............................................. 125 2 PreviousWork ............................................ 127 3 ClutteredSceneModelling.................................. 128 4 SyntheticStereoPairGeneration............................. 129 5 Experiments.............................................. 130 5.1 ChoosingSceneParameters .......................... 131 5.2 PerformanceEvaluation.............................. 132 6 Conclusion............................................... 135 References.................................................... 135 Contents XIII MedialSpheresforShapeApproximation............................ 137 SvetlanaStolpner,PaulKry,KaleemSiddiqi 1 Introduction .............................................. 137 2 BackgroundandPreviousWork ............................. 139 3 ComputationofSpheres.................................... 140 4 VolumetricErrorforUnionsofSpheres ....................... 141 4.1 VolumetricError:ExactorLowerBound ............... 142 4.2 UnionsofSpheres:Tools............................. 142 4.3 ExperimentalResults................................ 143 5 ApproximateSeparationDistance............................ 144 5.1 ImprovingBoundaryCoveragebyConservative Dilation ........................................... 144 5.2 HierarchyConstructionUsingRectangle-Swept Spheres ........................................... 145 5.3 ExperimentalResults................................ 146 6 Conclusions .............................................. 147 References.................................................... 148 AHeuristicAlgorithmforSlicingintheRapidFreeze PrototypingofSculpturedBodies ................................... 149 EricBarnett,JorgeAngeles,DamianoPasini,PieterSijpkes 1 Introduction .............................................. 149 2 DataImportandTransformation ............................. 152 2.1 FacetDataImportationwithfacetread .............. 152 2.2 TransformationofFacetData ......................... 154 3 PartBoundaryPaths ....................................... 154 4 ScaffoldingBoundaryPaths................................. 155 5 PathBuffering ............................................ 156 5.1 TheMatlabbuffermFunction....................... 156 5.2 bufferf,aContourBufferingFunctionforPlanar Regions ........................................... 157 6 FillPaths ................................................ 159 7 Results .................................................. 160 8 Conclusions .............................................. 160 References.................................................... 161 RobustDesignof2nd OrderTerminalILCUsingμ-Analysis andaGeneticAlgorithmApproach.................................. 163 GuyGauthier,MathieuBeauchemin-Turcotte,BenoitBoulet 1 Introduction .............................................. 163 2 ProblemSetup ............................................ 164 3 SecondOrderTILCAlgorithm .............................. 165 4 Themu-AnalysisApproach ................................. 167 5 GeneticAlgorithm......................................... 170
Description: