ebook img

BPS Solutions in AdS/CFT PDF

0.09 MB·English
by  E. Gava
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview BPS Solutions in AdS/CFT

BPS solutions in AdS/CFT EdiGava1,2,GiuseppeMilanesi2,3∗,KumarS.Narain1,andMartinO’Loughlin1,4 1 HighEnergySection,TheAbdusSalamInternationalCentreforTheoreticalPhysics,StradaCostiera11, 34014Trieste,Italy 2 IstitutoNazionalediFisicaNucleare,sez.diTrieste 3 ScuolaInternazionaleSuperiorediStudiAvanzati,ViaBeirut2-4,34014Trieste,Italy 7 4 UniverzavNoviGorici,Vipavska13,P.P.301,Rozˇnadolina,SI-5000NovaGorica,Slovenia 0 0 2 We study a class of exact supersymmetric solutions of type IIB Supergravity. They have an SO(4) × SU(2)×U(1)isometryandpreservegenerically4ofthe32supersymmetriesofthetheory.Asymptotically n AdS5×S5solutionsinthisclassaredualto1/8BPSchiraloperatorswhichpreservethesamesymmetries a intheN =4SYMtheory. Theyareparametrizedbyasetoffourfunctionsthatsatisfycertaindifferential J equations. Weanalyzethesolutionstotheseequationsinalargeradiusasymptoticexpansion: theycarry 2 chargeswithrespecttotwoU(1)KKgaugefieldsandtheirmasssaturatestheexpectedBPSbound.Wealso 1 showhowthesameformalismissuitableforthedescriptionofexcitationsoftheAdS5×Yp,qgeometries. 1 v ToappearintheproceedingsoftheRTNworkshop”ForcesUniverse”,Naples,October9-132006 9 1 1 1 Introduction 1 0 7 OneofthefirststepsinunderstandingtheAdS/CFT correspondenceistosetupaprecisedictionarybe- 0 tweenthestatesofthetheoriesonthetwosidesofthecorrespondence.Itiswellknownthattheparameters h/ oftheN = 4SU(N)SYM,namelyλ ≡ gY2MN andN shouldbeidentifiedwiththeparametersoftype -t IIBStringTheoryonAdS5×S5,namelyLAdS,ℓs,gs,asL4AdS =4πλℓ4s,gs =λ/N. p WemayconsidersolutionstothesupergravityequationsofmotionwhichareasymptoticallyAdS5 S5 × e as good candidates for dual of states in the CFT, provided that N λ 1 and any dimension four h ≫ ≫ curvatureinvariantofthesolutions, ,satisfies : R4 v i L4 λ N. (1.1) X R4 AdS ≪ ≪ r Here and in [1] we address the problem of finding BPS supergravity solutions which are dual to chiral a primaryoperatorsoftheform c Tr Zq Tr Zq Tr Zri , (1.2) i 1 2 3 X (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) whereZ ,Z andZ arethethreecomplexscalarsofthe = 4CFTandthecoefficientsc arechosen 1 2 3 i N togivea(anti)-symmetrizationandtracestructuresuchthatthes-wavemodeonS3oftheseoperatorsare BPS.ThecorrespondingstatessaturatetheBPSbound: ∆=2q+r, (1.3) where∆istheconformaldimensionoftheoperator. Wewillalsoassumethattheindexstructureissuch thatthestatespreserveanSU(2) U(1) subgroupoftheSO(6)R-symmetrygroup. Thefullamount L R × ofbosonicsymmetrypreservedbythesestatesis: R SU(2) U(1) SO(4) . (1.4) BPS × L× R R−charge× KK (cid:0) (cid:1) ∗ Correspondingauthor E-mail:[email protected], 2 E.Gava,G.Milanesi,K.S.Narain,andM.O’Loughlin:BPSsolutionsinAdS/CFT ThefirstRcorrespondstothetransformationsgeneratedbyD′ D 2J3 J,whereJ =J generates ≡ − R− 3 phaseshiftsonZ , JR generatessimultaneousequalphaseshiftsonZ ,Z , D isthedilatationoperator 3 3 1 3 andthelastSO(4)factorrepresentsthefactthatweareconsiderings-wavemodesonS3inthereduction of SYM theory on R S3 [4]. Consequently, we start from an Ansatz for the metric and the self-dual × RR5-formwhichpreservesthisamountofsymmetry. Wealsorequirethatthebackgroundpossessesthe requiredamountofsupersymmetrybydemandingthatitpossessesaKillingspinor. 2 Supergravity analysis Welookforgeometriesdualtothestatesin(1.2). TheywillthusbeinvariantunderSU(2) SO(4) L KK × as definedin the previoussection and invariantbutchargedunderthe remainingU(1) . Theextra non- R compacttime-likesymmetry(R oftheprevioussection)isassociatedtoinvarianceunderthetransfor- BPS mationsgeneratedbyD′inthegaugetheoryandwillemergeasadirectconsequenceofsupersymmetry. ThemostgenericAnsatzconsistentwiththesesymmetriesisgivenby ds2 =g dxµdxν +ρ2 σˆ2+σˆ2 +ρ2(σˆ A dxµ)2+ρ˜2dΩ˜2. (2.1) µν 1 1 2 3 3− µ 3 where ρ , ρ , ρ˜, A and g are(cid:0)function(cid:1)s of the four coordinates xµ. The space is a fibration of a 1 3 µ µν squashed3-sphere(onwhichtheSU(2)left-invariant1-formsσaˆ aredefined)andaround3-sphereover afourdimensionalmanifold. Sincewearelookingforthegeometricdualtooperatorswhichinvolveonlyscalarfieldsinthegauge theory,theonlypossiblenon-zeroRamond-RamondfieldstrengthisthefiveformF . Themostgeneric (5) Ansatzforthefiveformwhichisinvariantunderthegivensymmetriesis: F = +⋆ (2.2) (5) 5 5 F F with 1 = G˜ dxµ dxν +V˜ dxµ (σˆ A dxµ)+g˜σˆ σˆ ρ˜3dΩ˜ (2.3) 5 µν µ 3 µ 1 2 3 2F ∧ ∧ − ∧ ∧ h i Supersymmetryisguaranteedbytheexistenceofasupersymmetryparameterψsuchthatthegravitino variationitgeneratesvanishes: i δχ = ψ+ F ΓM1M2M3M4M5Γ ψ =0. (2.4) M ∇M 480 M1M2M3M4M5 M ThevectorK = ψ¯Γµ∂ ψ isKilling andtimelike anditgeneratesthe extranon-compacttimelikeU(1). µ We may thus choose the time coordinate t such that ∂ = K. The Bianchi identity dF = 0 and the t (5) existence of the spinor ψ are sufficient for our supergravity background to satisfy the full equations of motionoftypeIIBSupergravityandtoexpressthecompletesolutioninthefollowingform[1]: ρ2 ds2 = h−2(dt+V dxi)2+h2 1(T2δ dxidxj +dy2)+ρ˜2dΩ˜2+ − i ρ2 ij 3 3 +ρ2 σˆ2+σˆ2 +ρ2(σˆ A dt A dxi)2 (2.5) 1 1 2 3 3− t − i wherethecoordinateyistheproductoftworadii (cid:0) (cid:1) y =ρ ρ˜>0. (2.6) 1 Alltheentriesofthemetricdependonlyon(x1,x2,y)andcanbeexpressedintermsoffourindependent functionsm,n,p,T asfollows: ρ4 = mp+n2y4 ρ4 = p2 ρ˜4 = m 1 m 3 m(mp+n2) mp+n2 h4 = mp2 A = n−p A =A V 1ǫ ∂ lnT mp+n2 t p i t i− 2 ij j dV = y⋆ [dn+(nD+2ym(n p)+2n/y)dy] 3 − − 3 where⋆ indicatestheHodgedualinthethreedimensionaldiagonalmetricds2 = T2δ dxidxj +dy2. 3 3 ij Similarly,onecancompletelyexpressthe5-formintermsofm,n,p,T [1]. Thecompleteanalysisin[1] showthatthesesolutionspreservegenerically4ofthe32supersymmetriesoftypeIIBSupergravity. TheBianchiidentitiesandintegrabilityconditionsgiverisetoasetofnonlinearcoupledellipticdiffer- entialequations y3(∂2+∂2)n+∂ y3T2∂ n +y2∂ T2 yDn+2y2m(n p) +4y2DT2n=0 1 2 y y y − y3(∂12+∂22)m+∂y(cid:0)y3T2∂ym(cid:1) +∂y (cid:2)y3T(cid:0)22mD =0 (cid:1)(cid:3) (2.7) y3(∂12+∂22)p+∂y (cid:0)y3T2∂yp +(cid:1) ∂y y(cid:0)3T24ny(n−(cid:1)p) =0 ∂ylnT =D D(cid:0) 2y(m+(cid:1)n 1(cid:2)/y2). (cid:3) ≡ − 3 Solution tothe Supergravity equations Asolutiontotheequationspresentedintheprevioussectionisdeterminedbyasetofboundaryconditions at infinity (large values of y,xi) and on the plane y = 0; they should be chosen in such a way as to give an asymptotically to AdS S5 non-singulargeometry. Due to the non-linearity of the equations 5 × therelationshipbetweenboundaryconditionsandnon-singularsolutionswithAdS S5 asymptoticsis 5 × difficulttocontrol. Thesolutionsdescribedin[2],areasubsetofoursspecifiedbytheadditionalconstraints, 1 1/2 z n=p= m= − T =1. (3.1) y2 − y2 Inthiscasewehave D =0 ρ =ρ =ρ A =0 T =1 (3.2) 1 3 t and the three second order equationscollapse to one single linear equation. As this equationis linear it hasbeenpossibletocompletelyidentifytheboundaryconditionsaty = 0andatinfinitythatgiveriseto regularasymptoticallyAdS S5geometries[2,3]. 5 × 4 Asymptotics andcharge In this section we discuss asymptotic solutions to the differential equations in (2.7) for large values of (x1,x2,y)whichgiveAdS S5asymptotics. 5 × ThefirstcorrectionstotheAdS S5 geometrycapturetheglobalU(1)chargesundertwooutofthe 5 × threeU(1)CartangaugefieldsarisingfromtheKKreductionofIIBsupergravityonS5tofivedimensional maximalgaugedsupergravity. Itisnothardtoseethatthefollowingexpressionsforourfunctions 1 1 1 1 m , n , p , T 1 (4.1) ∼ y2 − L4R4 ∼ L4R4 ∼ L4R4 ∼ satisfy the equations at leading order for large R, with (L2R,θ,φ) polar coordinates in the (x ,x ,y) 1 2 spaceandgivetheleadingasymptotics dR˜2 ds2 =L2 R˜2dt2+ +R˜2dΩ˜2+dθ2+cos2θdφ˜2+sin2θdΩˆ2 (4.2) − R˜2 3 3! withφ˜=φ t,whichisAdS S5inPoincarecoordinates. 5 − × 4 E.Gava,G.Milanesi,K.S.Narain,andM.O’Loughlin:BPSsolutionsinAdS/CFT Wewillnowsolvethedifferentialequationstothenexttwoordersintheasymptoticexpansion.Forthe sakeofsimplicitywewillassumethat∂ isalsoaKillingvectorofoursolutions.Despitethissimplifying φ assumption,ingeneralthesolutionswillstillbechargedunderthecorrespondingKKgaugefield. Weassumethefollowingexpansionforourfunctions: 1 1 m (θ) m (θ) 2 3 m + + ∼ y2 − L4R4 R6 R8 1 n (θ) n (θ) 2 3 n + + ∼ L4R4 R6 R8 (4.3) 1 p (θ) p (θ) 2 3 p + + ∼ L4R4 R6 R8 t (θ) 2 T 1+ . ∼ R4 Ateachorder,thesolutionstotheequations(2.7)willdependgenericallyonsevenintegrationconstants. For the first subleading order, regularity of the asymptotic solution and coordinate redefinitions reduce thesetotwo,J andQ. The global U(1) charges under the Cartan gauge fields arising in the Kaluza Klein reduction of IIB supergravityoverS5canbereadofffromtheoffdiagonalcomponentsofthemetric 1 g g (4.4) tω ∝ ωωR2 whereωisasuitableangleintheS5andtheconstantofproportionalityistheglobalcharge.Theconstants J andQturnouttobetheglobalchargesundertheU(1)gaugefieldsdualtoJ3 andJ ofthegaugetheory R side. Fromtheg wecanreadoffthemassM ofourexcitationswhichcorrectlysatisfytheexpectedBPS tt bound πL2 M = AdS(J +2Q). (4.5) 4G | | | | 5 5 Sasaki-Einstein manifolds Intheprevioussectionweassumedthat∂ isaKillingvectorofourmetric.Thisliftstheinternalsymmetry φ toSU(2) U(1) U(1). We canfurtherrestrictoursolutionsrequiringthattheypreserve8insteadof × × only 4 supersymmetries. This results in a set of constraints on the functions m,n,p,T and give rise to AdS Yp,q geometries, where Yp,q are the Sasaki-Einstein manifolds constructed in [5]. Type IIB 5 × StringTheoryonAdS Yp,q isconjecturedtobedualto an = 1 Quivergaugetheoryspecifiedby 5 × N the 2 integers p,q. It is clear that, within our formalism, we can describe asymptotically AdS Yp,q 5 × solutions which are dual to operators in the correspondingquiver theory which preserve one half of its supersymmetry. WecanshowanexplicitexampleforthecaseofT1,1 Y1,0[7]. Thecorrespondinggaugetheoryhas ≡ anSU(N) SU(N)gaugegroup,andtwoSU(2)doubletsA,Bofchiralsuperfieldstransforminginthe (N,N¯)and×(N¯,N)respectivelyofthegaugegroup.TheSU(2)isaflavoursymmetry.InthecaseofT1,1 the SU(2) U(1) U(1) symmetryis lifted to SU(2) SU(2) U(1) as a reflection of this flavour × × × × symmetry.Assumingthefollowingleadingbehaviourforthefunctionsm,n,p,T 3 1 2L4 4L4 y θ −1/6 m n p T √6sin(θ) tan ∼ 2y2 ∼ 3 y4 ∼ 9 y4 ∼ L2 2 (cid:18) (cid:19) 5 with y2 = 2L2ρ˜2 andx2 +x2 = L4 tanθ −1/3 anda properparametrisationof theleftinvariantone 3 1 2 2 forms,oneobtainsthefollowingexpressionfortheleadingordermetric (cid:0) (cid:1) L2dρ˜2 ds2 ρ˜2dt2+ +ρ˜2dΩ˜2 + ∼ − ρ˜2 3 (cid:18) (cid:19) 1 1 1 +L2 dθ2+sin2θdφ2 + dθˆ2+sin2θˆdφˆ2 + dψˆ+cosθˆdφˆ+cosθdφ 2 (5.1) 6 6 9 (cid:20) (cid:21) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) whereφisthe(properlyrescaled)polarangleinthex1,x2 plane. Wecansolvetheequationstothenext orderassumingthebehaviour 3 1 m (θ) 2L4 n (θ) 4L4 p (θ) 2 3 3 m + n + p + ∼ 2y2 y4 ∼ 3 y4 y6 ∼ 9 y4 y6 −1/6 y θ t (θ) T √6sin(θ) tan + 1 ∼ L2 2 y (cid:18) (cid:19) Regularityandcoordinateredefinitionsnowreducethesevenintegrationsconstantstothree,J,Q,B. The extraconstantofintegrationmeasuresthetotalfluxundertheU(1)gaugefieldsobtainedbythereduction ofthe5-formF overanontrivial3-cycleofT1,1. Thisgaugefieldisassociatedtothebaryonchargein (5) thegaugetheory.Baryonscanbeconstructedfromoperatorsoftheform N ǫα1···αNǫβ1···βN k1···kN Bki (5.2) Dlm αiβi i=1 Y where α ,β are gaugeindexes, k are flavour indexesand Dk1···kN is a properSU(2) Clebsch Gordon i i i lm coefficient. 6 Conclusions WehavepresentedaparametrisationofexactsolutionsofTypeIIBSupergravitydualto(atleast)1/8BPS chiralprimariesinthe = 4SCFTortohalfsupersymmetricstatesinacertainclassof = 1Quiver N N gauge theories. These realise to the fully backreacted geometry of giant gravitons and dibaryonsin the correspondinggaugetheories.ThecorrectmatchingofchargesandsatisfactionoftheBPSboundisafirst nontrivialcheckontheconsistencyofthederivation.Adeeperstudyofboundaryconditionsaty =0and thegenericYp,q caseisdesirableandstillworkinprogress. References [1] E.Gava,G.Milanesi,K.S.NarainandM.O’Loughlin,arXiv:hep-th/0611065. [2] H.Lin,O.Lunin,andJ.Maldacena,JHEP10(2004)025 [3] G.MilanesiandM.O’Loughlin,JHEP09(2005)00 [4] E.Witten,Adv.Theor.Math.Phys.2(1998)253–291 [5] J.P.Gauntlett,D.Martelli,J.SparksandD.Waldram,Adv.Theor.Math.Phys.8(2004)711 [6] S.Benvenuti,S.Franco,A.Hanany,D.MartelliandJ.Sparks,JHEP0506(2005)064 [7] C.P.Herzog,I.R.KlebanovandP.Ouyang,arXiv:hep-th/0205100.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.