Bounds for the normal approximation of the maximum likelihood estimator Andreas Anastasiou Supervisor: Professor Gesine Reinert Department of Statistics University of Oxford This dissertation is submitted for the degree of Doctor of Philosophy Jesus College Trinity Term, 2016 Tomyparents,KyriacosandMaria,andmysiblings,AnnaandTassos. Acknowledgements Thefirstandmostimportantpersontothankismysupervisor,ProfessorGesineReinert. Iamdeeplygratefultoherfortheguidance,encouragementandsupportsheofferedme throughoutmytimeasherstudent. IwouldliketothankProfessorChristopheLeyforafruitfulcollaborationwhichleadto apaper,ofwhichtheresultscanbefoundinChapter5ofthethesis. I would also like to thank Dr Robert Gaunt for various insightful comments and suggestions. Last,butnotofleastimportance,Iwouldliketothankmyparentswhoencouragedme tocontinuewithpostgraduatestudies. Theresearch isconductedwiththe supportofa Teaching AssistantshipBursaryfrom theDepartmentofStatistics,UniversityofOxford,andtheEngineeringandPhysical SciencesResearchCouncil(EPSRC)grantEP/K503113/1. Abstract Theasymptoticnormalityofthemaximumlikelihoodestimator(MLE)underregularity conditionsisalongestablishedandfamousresult. Thisisaqualitativeresultandthe assessmentofsuchanormalapproximationisourmaininterest. Forthistaskwepartly use Stein’s method, which is a probabilistic technique that can be used to explicitly measurethedistributionaldistancebetweentwodistributions. Sinceitsfirstappearance in1972,themethodhasbeendevelopedforvariousdistributions;hereweusetheresults relatedtoStein’smethodfornormalapproximation. Inthisthesis,wederiveexplicitupperboundsonthedistributionaldistancebetweenthe distributionoftheMLEandthenormaldistribution. First,thefocusisonindependent andidenticallydistributedrandomvariablesfrombothdiscreteandcontinuoussingle- parameterdistributionswithparticularattentiontoexponentialfamilies. Fordiscrete distributions,thecasewheretheMLEcanbeontheboundaryoftheparameterspace is treated through a perturbation approach, which allows us to obtain bounds on the distributionaldistanceofinterest. Theboundsareoforder √1 ,wherenisthenumber n ofobservations. Simulation-basedresultsaregiventoillustratethepowerofthebound. Furthermore,oftentheMLEcannotbeobtainedanalyticallyandoptimisationmethods (suchastheNewton-Raphsonalgorithm)areused. Eveninsuchcases,order √1 bounds n aregivenforthedistributionaldistancerelatedtotheMLE. Thecaseofmulti-parameterdistributionsfollowssmoothlyafterthedetaileddiscussion v relatedtoascalarparameter. Apartfromextendingourapproachtoamulti-parameter setting, we alsocover thecaseof independentbut notnecessarilyidenticallydistributed (i.n.i.d.) randomvectorswithspecificfocusonthewidelyapplicablelinearregression models. Goingback tothesingle-parameter settingadifferent approachtoget anupperbound on the distributional distance between the distribution of the MLE and the normal distribution,based ontheDelta method,is alsodeveloped. The MLE fora Generalised Gamma distribution gives an illustration of the results obtained through this Delta methodapproach. Finally, we relax the independence assumption and results for the case of locally dependent random variables are obtained. An example of correlated sums of normally distributedrandomvariablesillustratesthebounds. Again,resultsthatdonotrequirean analyticexpressionoftheMLEtobeknownaregiven. Weendthisthesiswithideas currentlyinprogressandfurtheropenresearchquestions. Table of contents Listoffigures ix Listoftables x 1 Introduction 1 1.1 Motivationforthethesis . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Stein’smethodasausefultool . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outlineofthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Background 8 2.1 CentralLimittheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Maximumlikelihoodestimation . . . . . . . . . . . . . . . . . . . . 10 2.3 Stein’smethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 BoundsonthedistancetonormalfortheMLE 24 3.1 TheboundedWassersteinandtheKolmogorovdistance . . . . . . . . 25 3.2 BoundsintermsoftheboundedWassersteindistance . . . . . . . . . 27 3.3 Single-parameterexponentialfamilies . . . . . . . . . . . . . . . . . 36 3.3.1 Theexponentialdistribution . . . . . . . . . . . . . . . . . . 40 3.3.2 Empiricalresults . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Discretedistributions: Theboundaryissue . . . . . . . . . . . . . . . 51 3.4.1 Theperturbationapproach . . . . . . . . . . . . . . . . . . . 52 Tableofcontents vii 3.4.2 Example: ThePoissondistribution . . . . . . . . . . . . . . . 60 3.5 Boundsonthemeansquarederror . . . . . . . . . . . . . . . . . . . 68 4 Multi-parameterdistributions 79 4.1 Non-identicallydistributedrandomvectors . . . . . . . . . . . . . . 81 4.1.1 Ageneralbound . . . . . . . . . . . . . . . . . . . . . . . . 82 4.1.2 Linearregression . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 Identicallydistributedrandomvectors . . . . . . . . . . . . . . . . . 102 4.2.1 Thenormaldistribution . . . . . . . . . . . . . . . . . . . . . 104 4.2.2 BoundswhentheMLEisnotknownexplicitly . . . . . . . . 114 5 AnapproachusingtheDeltamethod 133 5.1 NewboundsonthedistancetonormalfortheMLE . . . . . . . . . . 134 5.2 Comparisoninexponentialfamilies . . . . . . . . . . . . . . . . . . 143 5.2.1 Boundsforsingle-parameterexponentialfamilies . . . . . . . 143 5.2.2 Boundsfortheexponentialdistribution . . . . . . . . . . . . 149 6 Locallydependentrandomvariables 151 6.1 Ageneralapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.2 Locallydependentnormalrandomvariables . . . . . . . . . . . . . . 160 6.3 Analternativebound . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.4 ResultsfornotanalyticallyknownMLE . . . . . . . . . . . . . . . . 174 6.4.1 Boundedsupport . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4.2 Boundedparameterspace . . . . . . . . . . . . . . . . . . . 179 7 Conclusion 183 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.2 Openproblemsforfutureexploration . . . . . . . . . . . . . . . . . 186 7.2.1 Furtherapplications . . . . . . . . . . . . . . . . . . . . . . 186 7.2.2 BeyondtheclassicalframeworkoftheMLE . . . . . . . . . . 189 Tableofcontents viii References 192 List of figures 3.1 The density function of (cid:112)ni(θ )(cid:0)θˆ (X)−θ (cid:1) for various sample 0 n 0 sizes. In this case X ,X ,···,X are i.i.d. random variables which 1 2 n followtheExp(1)distribution. . . . . . . . . . . . . . . . . . . . . . 49 3.2 The density function of (cid:112)ni(θ )(cid:0)θˆ (X)−θ (cid:1) for various sample 0 n 0 sizes. In this case X ,X ,···,X are i.i.d. random variables which 1 2 n followtheExp(0.5)distribution. . . . . . . . . . . . . . . . . . . . . 50 3.3 TheQ-Qplot,whenn=1000,andthebarplotoftheerrorfordifferent samplesizesfortheexponentialdistributionexample,Exp(1). . . . . 50 3.4 TheQ-Qplot,whenn=1000,andthebarplotoftheerrorfordifferent samplesizesfortheexponentialdistributionexample,Exp(0.5). . . . 51 √ 3.5 Thedensityfunctionof n(θˆ (X)−θ )forvarioussamplesizes. In n 0 this case X ,X ,···,X are i.i.d. random variables which follow the 1 2 n Poisson(2)distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.6 TheQ-Qplot,whenn=1000,andthebarplotoftheerrorfordifferent samplesizesforthePoissondistributionwithmeanequalto2. . . . . 68 6.1 Structureofa2m-dependentsequence. . . . . . . . . . . . . . . . . . 153 List of tables 3.1 SimulationresultsfromtheExp(1)distribution . . . . . . . . . . . . 47 3.2 Simulation results from the Exp(0.5) distribution treated as a non- canonicalexponentialfamily . . . . . . . . . . . . . . . . . . . . . . 48 3.3 SimulationresultsfromthePoisson(2)distribution . . . . . . . . . . 66 3.4 SimulationresultsfromtheBeta(1.5,1)distribution . . . . . . . . . . 78
Description: