236 Graduate Texts in Mathematics Editorial Board S.Axler K.A.Ribet Graduate Texts in Mathematics 1 TAKEUTI/ZARING.Introduction to 34 SPITZER.Principles ofRandom Walk. Axiomatic Set Theory.2nd ed. 2nd ed. 2 OXTOBY.Measure and Category.2nd ed. 35 ALEXANDER/WERMER.Several Complex 3 SCHAEFER.Topological Vector Spaces. Variables and Banach Algebras.3rd ed. 2nd ed. 36 KELLEY/NAMIOKAet al.Linear 4 HILTON/STAMMBACH.A Course in Topological Spaces. Homological Algebra.2nd ed. 37 MONK.Mathematical Logic. 5 MACLANE.Categories for the Working 38 GRAUERT/FRITZSCHE.Several Complex Mathematician.2nd ed. Variables. 6 HUGHES/PIPER.Projective Planes. 39 ARVESON.An Invitation to C*-Algebras. 7 J.-P.SERRE.A Course in Arithmetic. 40 KEMENY/SNELL/KNAPP.Denumerable 8 TAKEUTI/ZARING.Axiomatic Set Theory. Markov Chains.2nd ed. 9 HUMPHREYS.Introduction to Lie 41 APOSTOL.Modular Functions and Algebras and Representation Theory. Dirichlet Series in Number Theory. 10 COHEN.A Course in Simple Homotopy 2nd ed. Theory. 42 J.-P.SERRE.Linear Representations of 11 CONWAY.Functions ofOne Complex Finite Groups. Variable I.2nd ed. 43 GILLMAN/JERISON.Rings of 12 BEALS.Advanced Mathematical Analysis. Continuous Functions. 13 ANDERSON/FULLER.Rings and 44 KENDIG.Elementary Algebraic Categories ofModules.2nd ed. Geometry. 14 GOLUBITSKY/GUILLEMIN.Stable 45 LOÈVE.Probability Theory I.4th ed. Mappings and Their Singularities. 46 LOÈVE.Probability Theory II.4th ed. 15 BERBERIAN.Lectures in Functional 47 MOISE.Geometric Topology in Analysis and Operator Theory. Dimensions 2 and 3. 16 WINTER.The Structure ofFields. 48 SACHS/WU.General Relativity for 17 ROSENBLATT.Random Processes.2nd ed. Mathematicians. 18 HALMOS.Measure Theory. 49 GRUENBERG/WEIR.Linear Geometry. 19 HALMOS.A Hilbert Space Problem 2nd ed. Book.2nd ed. 50 EDWARDS.Fermat's Last Theorem. 20 HUSEMOLLER.Fibre Bundles.3rd ed. 51 KLINGENBERG.A Course in Differential 21 HUMPHREYS.Linear Algebraic Groups. Geometry. 22 BARNES/MACK.An Algebraic 52 HARTSHORNE.Algebraic Geometry. Introduction to Mathematical Logic. 53 MANIN.A Course in Mathematical Logic. 23 GREUB.Linear Algebra.4th ed. 54 GRAVER/WATKINS.Combinatorics with 24 HOLMES.Geometric Functional Emphasis on the Theory ofGraphs. Analysis and Its Applications. 55 BROWN/PEARCY.Introduction to 25 HEWITT/STROMBERG.Real and Abstract Operator Theory I:Elements of Analysis. Functional Analysis. 26 MANES.Algebraic Theories. 56 MASSEY.Algebraic Topology:An 27 KELLEY.General Topology. Introduction. 28 ZARISKI/SAMUEL.Commutative 57 CROWELL/FOX.Introduction to Knot Algebra.Vol.I. Theory. 29 ZARISKI/SAMUEL.Commutative 58 KOBLITZ.p-adic Numbers,p-adic Algebra.Vol.II. Analysis,and Zeta-Functions.2nd ed. 30 JACOBSON.Lectures in Abstract Algebra 59 LANG.Cyclotomic Fields. I.Basic Concepts. 60 ARNOLD.Mathematical Methods in 31 JACOBSON.Lectures in Abstract Algebra Classical Mechanics.2nd ed. II.Linear Algebra. 61 WHITEHEAD.Elements ofHomotopy 32 JACOBSON.Lectures in Abstract Algebra Theory. III.Theory ofFields and Galois 62 KARGAPOLOV/MERIZJAKOV. Theory. Fundamentals ofthe Theory ofGroups. 33 HIRSCH.Differential Topology. 63 BOLLOBAS.Graph Theory. (continued after index) John B. Garnett Bounded Analytic Functions Revised First Edition JohnB.Garnett DepartmentofMathematics 6363MathematicalSciences UniversityofCalifornia,LosAngeles LosAngeles,CA.90095–1555 USA [email protected] EditorialBoard: S.Axler K.A.Ribet DepartmentofMathematics DepratmentofMathematics SanFranciscoStateUniversity UniversityofCalifornia,Berkeley SanFrancisco,CA94132 Berkeley,CA94720-3840 USA USA [email protected] [email protected] PreviouslypublishedbyAcademicPress,Inc. SanDiego,CA92101 Mathematics:SubjectClassification(2000):30D5530–0246315 LibraryofCongressControlNumber:2006926458 ISBN-13:978-0387-33621-3 ISBN-10:0-387-33621-4 Printedonacid-freepaper. ©2007SpringerScience+BusinessMedia,LLC Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork, NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Use in connection with any form of information storage and retrieval, electronic adaptation, computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. 9 8 7 6 5 4 3 2 1 springer.com To Dolores Preface to Revised First Edition ThiseditionofBoundedAnalyticFunctionsisthesameasthefirsteditionexcept forthecorrectionsofseveralmathematicalandtypographicalerrors.Ithankthe many colleagues and students who have pointed out errors in the first edition. TheseincludeS.Axler,C.Bishop,A.Carbery,K.Dyakonov,J.Handy,V.Havin,H. Hunziker,P.Koosis,D.Lubinsky,D.Marshall,R.Mortini,A.Nicolau,M.O’Neill, W.Rudin,D.Sarason,D.Sua´rez,C.Sundberg,C.Thiele,S.Treil,I.Uriarte-Tuero, J.Va¨isa¨la¨,N.Varopoulos,andL.Ward. Ihadplannedtoprepareasecondeditionwithanupdatedbibliographyandan appendixonresultsnewinthefieldsince1981,butthatworkhasbeenpostponedfor toolong.Inthemeantimeseveralexcellentrelatedbookshaveappeared,including M. Andersson, Topics in Complex Analysis; G. David and S. Semmes, Singular Integrals and Rectifiable Sets in (cid:2)n and Analysis of and on Uniformly Rectifi- ableSets;S.Fischer,Functiontheoryonplanardomains;P.Koosis,Introduction to H spaces, Second edition; N. Nikolski, Operators, Functions, and Systems; p K.Seip,InterpolationandSamplinginSpacesofAnalyticFunctions;andB.Simon, OrthogonalPolynomialsontheUnitCircle. Severalproblemsposedinthefirsteditionhavebeensolved.Igivereferences only to Mathematical Reviews. The question page 167 on when E∞ contains a BlaschkeproductwassettledbyA.StrayinMR0940287.M.Papadimitrakis,MR 0947674,gaveacounterexampletotheconjectureinProblem5page170.Thelate T.Wolff,MR1979771,hadacounterexampletotheBaernsteinconjecturecited on page 260. S. Treil resolved the g2 problem on page 319 in MR 1945294. A constructiveFefferman-SteindecompositionoffunctionsinBMO((cid:2)n)wasgiven bythelateA.UchiyamainMR1007515,andC.Sundberg,MR0660188,found aconstructiveproofoftheChang-Marshalltheorem.Problem5.3page420was resolvedbyGarnettandNicolau,MR1394402,usingworkofMarshallandStray MR1394401.Problem5.4.onpage420remainsapuzzle,butHjelleandNicolau (PacificJournalofMathematics,2006)haveaninterestingresultonapproximation of moduli. P. Jones, MR 0697611, gave a construction of the P. Beurling linear operatorofinterpolation. IthankSpringerandF.W.Gehringforpublishingthisedition. JohnGarnett vii Contents Preface vii ListofSymbols xiii I. PRELIMINARIES 1. Schwarz’sLemma 1 2. Pick’sTheorem 5 3. PoissonIntegrals 10 4. Hardy–LittlewoodMaximalFunction 19 5. NontangentialMaximalFunctionandFatou’sTheorem 27 6. SubharmonicFunctions 32 Notes 38 ExercisesandFurtherResults 39 II. HP SPACES 1. Definitions 48 2. BlaschkeProducts 51 3. Maxim(cid:2)alFunctionsandBoundaryValues 55 4. (1/π) (log|f(t)|/(1+t2))dt >−∞ 61 5. TheNevanlinnaClass 66 6. InnerFunctions 71 7. Beurling’sTheorem 78 Notes 83 ExercisesandFurtherResults 84 III. CONJUGATEFUNCTIONS 1. Preliminaries 98 2. The Lp Theorems 106 3. ConjugateFunctionsandMaximalFunctions 111 ix x contents Notes 118 ExercisesandFurtherResults 120 IV. SOMEEXTREMALPROBLEMS 1. DualExtremalProblems 128 2. TheCarleson–JacobsTheorem 134 3. TheHelson–Szego¨ Theorem 139 4. InterpolatingFunctionsofConstantModulus 145 5. ParametrizationofK 151 6. Nevanlinna’sProof 159 Notes 168 ExercisesandFurtherResults 168 V. SOMEUNIFORMALGEBRA 1. MaximalIdealSpaces 176 2. InnerFunctions 186 3. AnalyticDiscsinFibers 191 4. RepresentingMeasuresandOrthogonalMeasures 193 5. TheSpace L1/H1 198 0 Notes 205 ExercisesandFurtherResults 206 VI. BOUNDEDMEANOSCILLATION 1. Preliminaries 215 2. TheJohn–NirenbergTheorem 223 3. Littlewood–PaleyIntegralsandCarlesonMeasures 228 4. Fefferman’sDualityTheorem 234 5. VanishingMeanOscillation 242 6. WeightedNormInequalities 245 Notes 259 ExercisesandFurtherResults 261 VII. INTERPOLATINGSEQUENCES 1. Carleson’sInterpolationTheorem 275 2. TheLinearOperatorofInterpolation 285 3. Generations 289 4. HarmonicInterpolation 292 5. Earl’sElementaryProof 299 Notes 304 ExercisesandFurtherResults 305 contents xi VIII. THECORONACONSTRUCTION 1. InhomogeneousCauchy–RiemannEquations 309 2. TheCoronaTheorem 314 3. TwoTheoremsonMinimumModulus 323 4. InterpolatingBlaschkeProducts 327 5. Carleson’sConstruction 333 6. GradientsofBoundedHarmonicFunctions 338 7. AConstructiveSolutionof∂b/∂z¯ =μ 349 Notes 357 ExercisesandFurtherResults 358 IX. DOUGLASALGEBRAS 1. TheDouglasProblem 364 2. H∞+C 367 3. TheChang-MarshallTheorem 369 4. TheStructureofDouglasAlgebras 375 5. TheLocalFatouTheoremandanApplication 379 Notes 384 ExercisesandFurtherResults 385 X. INTERPOLATINGSEQUENCESANDMAXIMALIDEALS 1. AnalyticDiscsinM 391 2. Hoffman’sTheorem 401 3. ApproximateDependencebetweenKernels 406 4. InterpolatingSequencesandHarmonicSeparation 412 5. AConstructiveDouglas–RudinTheorem 418 Notes 428 ExercisesandFurtherResults 428 BIBLIOGRAPHY 434 INDEX 453 List of Symbols Symbol Page Symbol Page A 120 |E|=Lebesguemeasureof E 23 o Am 121 E 292 A∞ 121 f(m) 180 Aα 57 fˆ(m)=Gelfandtransform 178 A−1 176 fˆ(s)=Fouriertransform 59 Aˆ 179 f (t) 15 x A⊥ 196 f+(x) 324 A 57 f#(x) 271 N B 237 f∗(t) 55 B 274 (f˜)∗(θ) 106 0 BLO 271 G 401 BMO 216 Gδ(b) 371 BMOA 262 Hf(θ) 102 BMO(T) 218 Hf(x) 105 BMOd 266 Hεf(x) 123 BUC 242 H∗f(x) 123 [B,H] 270 Hp = Hp(D) 48 B ={f analytic,|f(z)|≤1} 7 Hp = Hp(dt) 49 B,asetofinnerfunctions 364 H∞ 48 B 364 Hq 128 A 0 C =C(T) 128 H1 267 d COP 432 H1 236 R C 367 (H∞)−1 63 A Cl(f,z) 76 H∞+C 132 D 1 [H∞,B¯] 364 D¯ 1 [H∞,U ] 365 A dist(f,Hp) 129 H 5 dist∗ 241 I˜ 221 D 391 J 404 m ∂/∂z 312 J(f , f ,... , f ) 319 1 2 n ∂/∂z¯ 309 K(z ,r) 2 0 ∂¯ 354 Kδ(B) 401 E∗ 323 LC(x) 235 xiii