ebook img

Boundary Value Problems, Weyl Functions, and Differential Operators (Monographs in Mathematics (108)) PDF

775 Pages·2020·3.698 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Boundary Value Problems, Weyl Functions, and Differential Operators (Monographs in Mathematics (108))

Monographs in Mathematics 108 Jussi Behrndt Seppo Hassi Henk de Snoo Boundary Value Problems, Weyl Functions, and Differential Operators Monographs in Mathematics Volume 108 Series Editors Herbert Amann, Universität Zürich, Zürich, Switzerland Jean-Pierre Bourguignon, IHES, Bures-sur-Yvette, France William Y. C. Chen, Nankai University, Tianjin, China Associate Editor Huzihiro Araki, Kyoto University, Kyoto, Japan John Ball, Heriot-Watt University, Edinburgh, UK Franco Brezzi, Università degli Studi di Pavia, Pavia, Italy Kung Ching Chang, Peking University, Beijing, China Nigel Hitchin, University of Oxford, Oxford, UK Helmut Hofer, Courant Institute of Mathematical Sciences, New York, USA Horst Knörrer, ETH Zürich, Zürich, Switzerland Don Zagier, Max-Planck-Institut, Bonn, Germany The foundations of this outstanding book series were laid in 1944. Until the end ofthe1970s,atotalof77volumesappeared,includingworksofsuchdistinguished mathematicians asCarathéodory, NevanlinnaandShafarevich,toname afew.The series came to its name and present appearance in the 1980s. In keeping its well-established tradition, only monographs of excellent quality are published in this collection. Comprehensive, in-depth treatments of areas of current interest are presented to a readership ranging from graduate students to professional mathematicians. Concrete examples and applications both within and beyond the immediate domain of mathematics illustrate the import and consequences of the theory under discussion. More information about this series at http://www.springer.com/series/4843 Jussi Behrndt Seppo Hassi Henk de Snoo (cid:129) (cid:129) Boundary Value Problems, Weyl Functions, and Differential Operators JussiBehrndt SeppoHassi Institut für Angewandte Mathematik Mathematics andStatistics Technische UniversitätGraz University of Vaasa Graz,Austria Vaasa,Finland Henk deSnoo Bernoulli Institute for Mathematics ComputerScienceandArtificialIntelligence University of Groningen Groningen,The Netherlands ISSN 1017-0480 ISSN 2296-4886 (electronic) Monographsin Mathematics ISBN978-3-030-36713-8 ISBN978-3-030-36714-5 (eBook) https://doi.org/10.1007/978-3-030-36714-5 MathematicsSubjectClassification(2010): 47A,47B,47E,47F,34B,34L,35P,81C,93B ©TheEditor(s)(ifapplicable)andTheAuthor(s)2020.Thisbookisanopenaccesspublication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap- tation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecreditto the originalauthor(s)and the source, providealink tothe CreativeCommonslicense andindicate if changesweremade. The images or other third party material in this book are included in the book's Creative Commons license,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthebook's CreativeCommonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthe permitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder. Theuse ofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc. inthis publi- cationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromthe relevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Linear Relations in Hilbert Spaces 1.1 Elementary facts about linear relations . . . . . . . . . . . . . . . 11 1.2 Spectra, resolvent sets, and points of regular type . . . . . . . . . 23 1.3 Adjoint relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4 Symmetric relations . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.5 Self-adjoint relations . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.6 Maximal dissipative and accumulative relations . . . . . . . . . . . 58 1.7 Intermediate extensions and von Neumann’s formulas . . . . . . . 65 1.8 Adjoint relations and indefinite inner products . . . . . . . . . . . 74 1.9 Convergence of sequences of relations . . . . . . . . . . . . . . . . 79 1.10 Parametric representations for relations . . . . . . . . . . . . . . . 87 1.11 Resolvent operators with respect to a bounded operator . . . . . . 96 1.12 Nevanlinna families and their representations . . . . . . . . . . . . 100 2 Boundary Triplets and Weyl Functions 2.1 Boundary triplets . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2.2 Boundary value problems . . . . . . . . . . . . . . . . . . . . . . . 115 2.3 Associated γ-fields and Weyl functions . . . . . . . . . . . . . . . . 118 2.4 Existence and construction of boundary triplets . . . . . . . . . . 126 2.5 Transformations of boundary triplets . . . . . . . . . . . . . . . . 134 2.6 Kre˘ın’s formula for intermediate extensions . . . . . . . . . . . . . 148 2.7 Kre˘ın’s formula for exit space extensions . . . . . . . . . . . . . . 155 2.8 Perturbation problems . . . . . . . . . . . . . . . . . . . . . . . . . 163 3 Spectra, Simple Operators, and Weyl Functions 3.1 Analytic descriptions of minimal supports of Borel measures . . . 169 3.2 Growth points of finite Borel measures. . . . . . . . . . . . . . . . 178 3.3 Spectra of self-adjoint relations . . . . . . . . . . . . . . . . . . . . 183 vi Contents 3.4 Simple symmetric operators . . . . . . . . . . . . . . . . . . . . . . 188 3.5 Eigenvalues and eigenspaces. . . . . . . . . . . . . . . . . . . . . . 196 3.6 Spectra and local minimality . . . . . . . . . . . . . . . . . . . . . 203 3.7 Limit properties of Weyl functions . . . . . . . . . . . . . . . . . . 212 3.8 Spectra and local minimality for self-adjoint extensions . . . . . . 218 4 Operator Models for Nevanlinna Functions 4.1 Reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . . . 223 4.2 Realization of uniformly strict Nevanlinna functions . . . . . . . . 235 4.3 Realization of scalar Nevanlinna functions via L2-space models . . 252 4.4 Realization of Nevanlinna pairs and generalized resolvents . . . . . 261 4.5 Kre˘ın’s formula for exit space extensions . . . . . . . . . . . . . . 270 4.6 Orthogonal coupling of boundary triplets . . . . . . . . . . . . . . 274 5 Boundary Triplets and Boundary Pairs for Semibounded Relations 5.1 Closed semibounded forms and their representations . . . . . . . . 282 5.2 Ordering and monotonicity . . . . . . . . . . . . . . . . . . . . . . 300 5.3 Friedrichs extensions of semibounded relations . . . . . . . . . . . 311 5.4 Semibounded self-adjoint extensions and their lower bounds . . . . 319 5.5 Boundary triplets for semibounded relations . . . . . . . . . . . . 332 5.6 Boundary pairs and boundary triplets . . . . . . . . . . . . . . . . 343 6 Sturm–Liouville Operators 6.1 Sturm–Liouville differential expressions . . . . . . . . . . . . . . . 366 6.2 Maximal and minimal Sturm–Liouville differential operators . . . 380 6.3 Regular and limit-circle endpoints . . . . . . . . . . . . . . . . . . 388 6.4 The case of one limit-point endpoint . . . . . . . . . . . . . . . . . 397 6.5 The case of two limit-point endpoints and interface conditions . . 412 6.6 Exit space extensions . . . . . . . . . . . . . . . . . . . . . . . . . 421 6.7 Weyl functions and subordinate solutions . . . . . . . . . . . . . . 425 6.8 Semibounded Sturm–Liouville expressions in the regular case . . . 434 6.9 Closed semibounded forms for Sturm–Liouville equations . . . . . 442 6.10 Principal and nonprincipal solutions of Sturm–Liouville equations . . . . . . . . . . . . . . . . . . . . . 454 6.11 Semibounded Sturm–Liouville operators and the limit-circle case . . . . . . . . . . . . . . . . . . . . . . . . . . 469 6.12 Semibounded Sturm–Liouville operators and the limit-point case . . . . . . . . . . . . . . . . . . . . . . . . . . 477 6.13 Integrable potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 483 7 Canonical Systems of Differential Equations 7.1 Classes of integrable functions . . . . . . . . . . . . . . . . . . . . 500 7.2 Canonical systems of differential equations . . . . . . . . . . . . . 504 Contents vii 7.3 Regular and quasiregular endpoints . . . . . . . . . . . . . . . . . 510 7.4 Square-integrability of solutions of real canonical systems . . . . . 513 7.5 Definite canonical systems. . . . . . . . . . . . . . . . . . . . . . . 520 7.6 Maximal and minimal relations for canonical systems . . . . . . . 525 7.7 Boundary triplets for the limit-circle case . . . . . . . . . . . . . . 534 7.8 Boundary triplets for the limit-point case . . . . . . . . . . . . . . 543 7.9 Weyl functions and subordinate solutions . . . . . . . . . . . . . . 559 7.10 Special classes of canonical systems . . . . . . . . . . . . . . . . . 566 8 Schr¨odinger Operators on Bounded Domains 8.1 Rigged Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . 577 8.2 Sobolev spaces, C2-domains, and trace operators . . . . . . . . . . 581 8.3 Trace maps for the maximal Schr¨odinger operator . . . . . . . . . 588 8.4 A boundary triplet for the maximal Schr¨odinger operator . . . . . 600 8.5 Semibounded Schr¨odinger operators . . . . . . . . . . . . . . . . . 611 8.6 Coupling of Schr¨odinger operators . . . . . . . . . . . . . . . . . . 616 8.7 Bounded Lipschitz domains . . . . . . . . . . . . . . . . . . . . . . 624 A Integral Representations of Nevanlinna Functions A.1 Borel transforms and their Stieltjes inversion . . . . . . . . . . . . 631 A.2 Scalar Nevanlinna functions . . . . . . . . . . . . . . . . . . . . . . 636 A.3 Operator-valued integrals . . . . . . . . . . . . . . . . . . . . . . . 645 A.4 Operator-valued Nevanlinna functions . . . . . . . . . . . . . . . . 655 A.5 Kac functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 A.6 Stieltjes and inverse Stieltjes functions . . . . . . . . . . . . . . . . 668 B Self-adjoint Operators and Fourier Transforms B.1 The scalar case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 B.2 The vector case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 C Sums of Closed Subspaces in Hilbert Spaces . . . . . . . . . . . . . . . . 691 D Factorization of Bounded Linear Operators . . . . . . . . . . . . . . . . 699 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 Preface This monograph is about boundary value problems, Weyl functions, and differ- ential operators. It grew out of a number of courses and seminars on functional analysis,operatortheory,anddifferentialequations,whichtheauthorshavegiven over a long period of time at various institutions. The project goes back to 2005 withacourseonextensiontheoryofsymmetricoperators,boundarytriplets,and Weyl functions given at TU Berlin, while an extended form of the course was presented in 2006/2007 at the University of Groningen. Many more such courses and seminars, often on special topics, would follow at TU Berlin, Jagiellonian University in Krak´ow, and, since 2011, at TU Graz. Theauthorswishtothankallthestudents,PhDstudents,andpostdocswho haveattendedtheselectures;theircriticalquestionsandcommentshaveledtonu- merous improvements. They have shown that lectures at the blackboard provide the ultimate test for the quality of the material. In particular, we mention Bern- hard Gsell, Markus Holzmann, Christian Ku¨hn, Vladimir Lotoreichik, Jonathan Rohleder, Peter Schlosser, Philipp Schmitz, Simon Stadler, Alef Sterk, and Rudi Wietsma. It is our experience that the individual chapters of this monograph can be used (with small additions from some of the other chapters) for independent courses on the respective topics. The book has benefited from our collaboration with many different col- leagues. We would like to single out our friends and faithful coauthors Yuri Ar- linski˘ı,VladimirDerkach,PeterJonas,MatthiasLanger,AnnemarieLuger,Mark Malamud, Hagen Neidhardt, Franek Szafraniec, Carsten Trunk, Henrik Winkler, and Harald Woracek. Special thanks go to Fritz Gesztesy, Gerd Grubb, Heinz Langer, and James Rovnyak, who have responded to our queries concerning his- torical developments and references. Wegratefullyacknowledgethesupportofthefollowinginstitutions:Deutsche Forschungsgemeinschaft, Jagiellonian University, TU Berlin, and TU Graz. We would like to thank the Mathematisches Forschungsinstitut Oberwolfach and the Mittag-Leffler Institute in Djursholm for their hospitality during the final stages of the preparation of this book. Finally, we are indebted to the Austrian Science Fund(GrantPUB683-Z)andtheUniversityofVaasaforfundingtheopenaccess publication of this monograph. Jussi Behrndt, Seppo Hassi, and Henk de Snoo Introduction In this monograph the theory of boundary triplets and their Weyl functions is developed and applied to the analysis of boundary value problems for differential equationsandgeneraloperatorsinHilbertspaces.Concreteillustrationsbymeans ofweightedSturm–Liouvilledifferentialoperators,canonicalsystemsofdifferential equations,andmultidimensionalSchr¨odingeroperatorsareprovided.Theabstract notions of boundary triplets and Weyl functions have their roots in the theory of ordinary differential operators; they appear in a slightly different context also in the treatment of partial differential operators. Beforedescribingthecontentsofthemonographitmaybehelpfultoexplain theideasinthistextbymeansofthefollowingsimpleSturm–Liouvilledifferential expression d2 L=− +V, (1) dx2 whereitisassumedthatthepotentialV isarealmeasurablefunction.Thecontext inwhichthisdifferentialexpressionwillbeplacedservesasanexampleaswellas a motivation. The first step is to associate with L some differential operators in a suitable Hilbert space. Assume, e.g., that (1) is given on the positive half-line R+ =(0,∞)andassumeforsimplicitythattherealfunctionV isbounded.Define the linear space D by max D =(cid:2)f ∈L2(R+):f,f(cid:2) absolutely continuous, Lf ∈L2(R+)(cid:3) max and define the minimal operator S associated with L by Sf =−f(cid:2)(cid:2)+Vf, domS =(cid:2)f ∈D :f(0)=f(cid:2)(0)=0(cid:3). max Then S is a closed densely defined symmetric operator L2(R+); in fact, it is the closureof(thegraphof)therestrictionofS toC∞(R+).Itcanbeshownthatthe 0 adjoint operator S∗ is given by S∗f =−f(cid:2)(cid:2)+Vf, domS∗ =D , max whichisusuallycalledthemaximaloperatorassociatedwithL.Roughlyspeaking, S is a two-dimensional restriction of S∗ by means of the boundary conditions © The Author(s) 2020 1 J. Behrndt et al., Boundary Value Problems, Weyl Functions, and Differential Operators, Monographs in Mathematics 108, https://doi.org/10.1007/978-3-030-36714-5_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.