ebook img

Boundary value problems for systems of differential, difference and fractional equations : positive solutions PDF

313 Pages·2016·2.653 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Boundary value problems for systems of differential, difference and fractional equations : positive solutions

Boundary Value Problems for Systems of Differential, Difference and Fractional Equations Boundary Value Problems for Systems of Differential, Difference and Fractional Equations Positive Solutions Johnny Henderson and Rodica Luca AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON (cid:129) NEW YORK (cid:129) OXFORD PARIS (cid:129) SAN DIEGO (cid:129) SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 225WymanStreet,Waltham,MA02451,USA Copyright©2016J.HendersonandRodicaL.Tudorache. PublishedbyElsevierLtd. Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgencycanbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging. Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-12-803652-5 BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2015939629 ForinformationonallElsevierpublications visitourwebsiteathttp://store.elsevier.com/ Johnny Henderson dedicates this book to his siblings, Monty, Madonna, Jana, and Chrissie, and to the memory of his parents, Ernest and Madora. Rodica Luca ded- icates this book to her husband, Mihai Tudorache, and her son, Alexandru-Gabriel Tudorache,andtothememoryofherparents,VioricaandConstantinLuca. Preface In recent decades, nonlocal boundary value problems for ordinary differential equations, difference equations, or fractional differential equations have become a rapidlygrowingareaofresearch. Thestudyofthesetypesofproblemsisdrivennot only by a theoretical interest, but also by the fact that several phenomena in engi- neering, physics, and the life sciences can be modeled in this way. Boundaryvalue problems with positive solutions describe many phenomena in the applied sciences such as the nonlinear diffusion generated by nonlinear sources, thermal ignition of gases,andconcentrationinchemicalorbiologicalproblems. Variousproblemsaris- inginheatconduction,undergroundwaterflow,thermoelasticity,andplasmaphysics canbereducedtononlineardifferentialproblemswithintegralboundaryconditions. Fractionaldifferentialequationsdescribe manyphenomenainseveralfieldsof engi- neeringandscientificdisciplinessuchasphysics,biophysics,chemistry,biology(such as bloodflow phenomena),economics, controltheory, signal and imageprocessing, aerodynamics,viscoelasticity,andelectromagnetics. Hundredsofresearchersareworkingonboundaryvalueproblemsfordifferential equations,differenceequations,andfractionalequations,andattheheartofthecom- munity are researchers whose interest is in positive solutions. The authors of this monographoccupyanicheinthecenterofthatgroup.Themonographcontainsmany oftheirresultsrelatedtothesetopicsobtainedinrecentyears. InChapter1, questionsare addressedontheexistence, multiplicity, andnonexis- tenceofpositivesolutionsforsomeclassesofsystemsofnonlinearsecond-orderordi- nary differential equations with parameters or without parameters, subject to Riemann–Stieltjesboundaryconditions,andforwhichthenonlinearitiesarenonsin- gular or singular functions. Chapter 2 is devoted to the existence, multiplicity, and nonexistence of positive solutions for some classes of systems of nonlinear higher- orderordinarydifferentialequations with parameters or withoutparameters, subject tomultipointboundaryconditions,andforwhichthenonlinearitiesarenonsingularor singularfunctions.Asystemofhigher-orderdifferentialequationswithsign-changing nonlinearitiesandRiemann–Stieltjesintegralboundaryconditionsisalsoinvestigated. Chapter3dealswiththeexistence,multiplicity,andnonexistenceofpositivesolutions forsomeclassesofsystemsofnonlinearsecond-orderdifferenceequations,alsowith orwithoutparameters,subjecttomultipointboundaryconditions. Chapter4isconcernedwiththeexistence,multiplicity,andnonexistenceofpositive solutionsforsomeclassesofsystemsofnonlinearRiemann–Liouvillefractionaldif- ferential equations with parameters or without parameters, subject to uncoupled Riemann–Stieltjesintegralboundaryconditions,andforwhichthenonlinearitiesare nonsingularorsingularfunctions.Asystemoffractionalequationswithsign-changing nonlinearities and integral boundary conditions is also investigated. Chapter 5 is x Preface focusedontheexistence,multiplicity,andnonexistenceofpositivesolutionsforsome classes of systems of nonlinear Riemann–Liouville fractional differential equations with parameters or without parameters, subject to coupled Riemann–Stieltjes inte- gralboundaryconditions,andforwhichthenonlinearitiesarenonsingularorsingular functions. A system of fractional equations with sign-changing nonsingular or sin- gular nonlinearities and integral boundary conditions is also investigated. In each chapter,variousexamplesarepresentedwhichsupportthemainresults. Central to the results of each chapter are applications of the Guo–Krasnosel’skii fixed point theorem for nonexpansiveand noncontractiveoperators on a cone (The- orem 1.1.1). Unique to applications of the fixed point theorem is the novel rep- resentation of the Green’s functions, which ultimately provide almost a checklist for determining conditions for which positive solutions exist relative to given non- linearities. In the proof of many of the main results, applications are also made of the Schauder fixed-point theorem (Theorem 1.6.1), the nonlinear alternative of Leray–Schaudertype(Theorem2.5.1),andsometheoremsfromthefixedpointindex theory(Theorems1.3.1–1.3.3). Therehavebeen otherbooksin thepast onpositivesolutionsforboundaryvalue problems, but in spite of the area receiving much attention, there have been no new booksrecently. Thismonographprovidesaspringboardforotherresearcherstoem- ulatetheauthors’methods. Theaudienceforthisbookincludesthefamilyofmath- ematical and scientific researchers in boundary value problems for which positive solutions are important, and in addition, the monographcan serve as a great source fortopicstobestudiedingraduateseminars. JohnnyHenderson RodicaLuca About the authors JohnnyHenderson isadistinguishedprofessorofMathematicsattheBaylorUniver- sity,Waco,Texas, USA.He hasalsoheldfacultypositionsattheAuburnUniversity and the Missouri University of Science and Technology. His published research is primarilyintheareasofboundaryvalueproblemsforordinarydifferentialequations, finite difference equations, functional differential equations, and dynamic equations ontimescales. HeisanInauguralFellowoftheAmericanMathematicalSociety. Rodica Luca is a professor of Mathematics at the “Gheorghe Asachi” Technical University of Iasi, Romania. She obtained her PhD degree in mathematics from “AlexandruIoanCuza”UniversityofIasi. Herresearchinterestsareboundaryvalue problems for nonlinear systems of ordinary differential equations, finite difference equations, and fractionaldifferentialequations, and initial-boundaryvalueproblems fornonlinearhyperbolicsystemsofpartialdifferentialequations. Acknowledgments We aregratefulto all theanonymousrefereesforcarefullyreviewingearly draftsof themanuscript. WealsoexpressourthankstoGlynJones,theMathematicspublisher atElsevier,andtoStevenMathews,theEditorialprojectmanagerforMathematicsand StatisticsatElsevier,fortheirsupportandencouragementofusduringthepreparation of this book; and to Poulouse Joseph, the project manager for book production at Elsevier,forallofhisworkonourbook. The work of Rodica Luca was supported by a grant of the Romanian National AuthorityforScientificResearch,CNCS-UEFISCDI,projectnumberPN-II-ID-PCE- 2011-3-0557. Systems of second-order ordinary 1 differential equations with integral boundary conditions 1.1 Existence of positive solutions for systems with parameters Boundaryvalueproblemswithpositivesolutionsdescribemanyphenomenaintheap- pliedsciences,suchasthenonlineardiffusiongeneratedbynonlinearsources,thermal ignitionofgases,andconcentrationinchemicalorbiologicalproblems(seeBoucherif and Henderson, 2006; Cac et al., 1997; de Figueiredo et al., 1982; Guo and Laksh- mikantham, 1988a,b;Joseph and Sparrow, 1970; Keller and Cohen, 1967). Integral boundaryconditionsarise in thermalconduction,semiconductor,andhydrodynamic problems(e.g., Cannon,1964;Chegis,1984;Ionkin,1977;Samarskii,1980). In re- cent decades, many authors have investigated scalar problems with integral bound- aryconditions(e.g., Ahmadet al., 2008;Boucherif,2009;Jankowski, 2013;Jia and Wang,2012;Karakostas and Tsamatos, 2002;Ma and An, 2009;Webband Infante, 2008;Yang,2006).Wealsomentionreferences(CuiandSun,2012;Goodrich,2012; Haoetal.,2012;Infanteetal.,2012;InfanteandPietramala,2009a,b;KangandWei, 2009;Lan,2011;SongandGao,2011;Yang,2005;YangandO’Regan,2005;Yang and Zhang, 2012), where the authors studied the existence of positive solutions for somesystemsofdifferentialequationswithintegralboundaryconditions. 1.1.1 Presentation of the problem Inthissection,weconsiderthesystemofnonlinearsecond-orderordinarydifferential equations (cid:2) (a(t)u(cid:2)(t))(cid:2)−b(t)u(t)+λp(t)f(t,u(t),v(t))=0, 0<t<1, (c(t)v(cid:2)(t))(cid:2)−d(t)v(t)+μq(t)g(t,u(t),v(t))=0, 0<t<1, (S) withtheintegralboundaryconditions ⎧ (cid:7) (cid:7) ⎪⎪⎨αu(0)−βa(0)u(cid:2)(0)= 1u(s)dH (s), γu(1)+δa(1)u(cid:2)(1)= 1u(s)dH (s), 1 2 (cid:7)0 (cid:7)0 ⎪⎪⎩α˜v(0)−β˜c(0)v(cid:2)(0)= 1v(s)dK (s), γ˜v(1)+δ˜c(1)v(cid:2)(1)= 1v(s)dK (s), 1 2 0 0 (BC) BoundaryValueProblemsforSystemsofDifferential,DifferenceandFractionalEquations. http://dx.doi.org/10.1016/B978-0-12-803652-5.00001-6 Copyright©2016J.HendersonandRodicaL.Tudorache.PublishedbyElsevierLtd.Allrightsreserved. 2 BoundaryValueProblemsforSystemsofDifferential,DifferenceandFractionalEquations wheretheaboveintegralsareRiemann–Stieltjesintegrals. Theboundaryconditions aboveincludemultipointandintegralboundaryconditionsandthesumoftheseina singleframework. Wegivesufficientconditionsonf andgandontheparametersλandμsuchthat positivesolutionsofproblem(S)–(BC)exist. Byapositivesolutionofproblem(S)– (BC)wemeanapairoffunctions(u,v) ∈ C2([0,1])×C2([0,1])satisfying(S)and (BC)withu(t) ≥ 0,v(t) ≥ 0forallt ∈ [0,1]and(u,v) (cid:5)= (0,0). Thecaseinwhich thefunctionsH ,H ,K ,andK arestepfunctions—thatis,theboundaryconditions 1 2 1 2 (BC)becomemultipointboundaryconditions ⎧ ⎪⎪⎪⎪⎨ αu(0)−βa(0)u(cid:2)(0)=(cid:8)m aiu(ξi), γu(1)+δa(1)u(cid:2)(1)=(cid:8)n biu(ηi), i=1 i=1 ⎪⎪⎪⎪⎩ α˜v(0)−β˜c(0)v(cid:2)(0)=(cid:8)r civ(ζi), γ˜v(1)+δ˜c(1)v(cid:2)(1)=(cid:8)l div(ρi), i=1 i=1 (BC ) 1 wherem,n,r,l ∈ N,(N = {1,2,...})—wasstudiedinHendersonandLuca(2013g). System (S) with a(t) = 1, c(t) = 1, b(t) = 0, and d(t) = 0 for all t ∈ [0,1], f(t,u,v) = f˜(u,v), and g(t,u,v) = g˜(u,v)(denotedby (S )) and (BC )was inves- 1 1 tigated in Henderson and Luca (2014e). Some particular cases of the problem from HendersonandLuca(2014e)werestudiedinHendersonandLuca(2012e)(wherein (BC ), a = 0 for all i = 1,...,m, c = 0 for all i = 1,...,r, γ = γ˜ = 1, and 1 i i δ = δ˜ = 0—denotedby(BC )), in Luca (2011)(where in (S ), f˜(u,v) = f˜(v)and 2 1 g˜(u,v)=g˜(u)—denotedby(S )—andin(BC )wehaven =l,b =d,andη = ρ 2 2 i i i i for all i = 1,...,n, α = α˜, and β = β˜—denoted by (BC )), in Henderson et al. 3 (2008b)(problem(S )–(BC )with α = α˜ = 1 andβ = β˜ = 0), andin Henderson 2 3 and Ntouyas (2008b) and Henderson et al. (2008a) (system (S ) with the boundary 2 conditions u(0) = 0, u(1) = αu(η), v(0) = 0, v(1) = αv(η), η ∈ (0,1), and 0<α <1/η,oru(0)=βu(η),u(1)=αu(η),v(0)=βv(η),andv(1)=αv(η)). In HendersonandNtouyas(2008a),theauthorsinvestigatedsystem(S )withthebound- 2 ary conditionsαu(0)−βu(cid:2)(0) = 0, γu(1)+δu(cid:2)(1) = 0, αv(0)−βv(cid:2)(0) = 0, and γv(1)+δv(cid:2)(1)=0,whereα,β,γ,δ ≥0andα+β+γ +δ >0. In the proofof our main results, we shall use the Guo–Krasnosel’skii fixed point theorem(seeGuoandLakshmikantham,1988a),whichwepresentnow: Theorem1.1.1. LetX beaBanachspaceandletC ⊂ X beaconeinX. Assume (cid:11) and (cid:11) are bounded open subsets of X with 0 ∈ (cid:11) ⊂ (cid:11) ⊂ (cid:11) , and let A : 1 2 1 1 2 C∩((cid:11) \(cid:11) )→Cbeacompletelycontinuousoperator(continuous,andcompact— 2 1 thatis,itmapsboundedsetsintorelativelycompactsets)suchthateither (1) (cid:9)Au(cid:9)≤(cid:9)u(cid:9), u∈C∩∂(cid:11) ,and(cid:9)Au(cid:9)≥(cid:9)u(cid:9), u∈C∩∂(cid:11) ,or 1 2 (2) (cid:9)Au(cid:9)≥(cid:9)u(cid:9), u∈C∩∂(cid:11) ,and(cid:9)Au(cid:9)≤(cid:9)u(cid:9), u∈C∩∂(cid:11) . 1 2 Then,AhasafixedpointinC∩((cid:11) \(cid:11) ). 2 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.