ebook img

Boundary-Value Problems for Gravimetric Determination of a Precise Geoid PDF

234 Pages·1998·5.122 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Boundary-Value Problems for Gravimetric Determination of a Precise Geoid

Lecture Notes in Earth Sciences 73 Editors: .S Brooklyn Bhattacharji, Troy and Brooklyn Friedman, M. G. H. .J Bonn Neugebauer, and Tuebingen A. Seilacher, elaY Zden~kM artinec Boundary-Value Problems for Gravimetric Determination of a Precise Geoid With 15 Figures and 3 Tables regnirpS Author Zden~k Martinec Department of Geophysics Faculty of Mathematics and Physics Charles University V Hole~ovi~kfich 2, 180 00 Prague 8, Czech Republic e-mail, zdenek @ hervam.troja.mff.cuni.cz "For all Lecture Notes in Earth Sciences published till now please see final pages of the book" Cataloging-in-Publication data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Martinet, Zden~k: Boundary value problems for gravimetric determination in a precise geoid : with 3 tables / Zden~k Martinet. - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Santa Clara ; Singapore ; Paris ; Tokyo : Springer, 1998 (Lecture notes ni earth sciences ; 73) ISBN 3-540-64462-8 ISSN 0930-0317 ISBN 3-540-64462-8 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or m any other way, and storage in data banks. Duplication of this pubhcation or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1998 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. In this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Camera ready by author SPIN. 10569179 32/3142-543210 - Printed on acid-free paper Contents List of symbols ix Acknowledgements xii Introduction 1 The Stokes two-boundary-value problem for geoid determination 6 1A Formulation of the boundary-value problem ............ 6 1.2 Compensation of topographical masses ............... 7 1.3 Anomalous potential ......................... 9 1.4 Bruns's formula ............................ 10 1.5 Linearization of the boundary condition ............... 11 1.6 The first-degree spherical harmonics ................. 13 1.7 Numerical investigations ....................... 15 1.7.1 An example: constant height ................. t6 1.7.2 Axisymmetric geometry ................... t9 1.8 Different approximations leading to the fundamental equation of physical geodesy ............................ 23 1.9 Conclusion ............................... 26 The zeroth- and first-degree spherical harmonics in the Helmert 2nd condensation technique 28 2.1 Principle of mass conservation .................... 28 2.2 Principle of mass-center conservation ................ 31 2.3 Conclusion ............................... 32 3 Topographical effects 34 3.1 Approximations used for 5V . . . . . . . . . . . . . . . . . . . . . 34 3.2 A weak singularity of the Newton kernel .............. 35 3.3 The Pratt-Hayford and the Airy-Heiskanen isostatic compensation models ................................. 37 3.4 Helmert's condensation layer ..................... 39 3.5 The direct topographical effect on gravity ............. 40 3.6 The primary indirect topographical effect on potential ....... 42 vi Contents 3.7 The secondary indirect topographical effect on gravity ....... 44 3.8 Analytical expressions for integration kernels of Newton's type . . 44 3.8.1 The singularity of the kernel L-l(r, ¢, r') at the point ¢ = 0 45 3.9 Numerical tests ............................ 46 Planar approximation 50 4.1 Constant density of topographical masses .............. 50 4.2 Restricted integration ......................... 51 4.3 Planar approximation of distances .................. 15 4.4 The difference between spherical and planar approximation of topographical effects ......................... 53 4.5 Conclusion ............................... 54 Taylor series expansion of the Newton kernel 56 5.1 The problem of the convergence of Taylor series expansion .... 57 5.2 The Taylor expansion of the terrain roughness term ........ 59 5.3 Numerical computations ....................... 60 5.3.1 The Taylor kernels Ki .................... 60 5.3.2 The primary indirect topographical effect on potential . . 62 5.4 Conclusion ............................... 64 A.5 Integration kernels Mi(r, ~, R) .................... 65 A.5.1 Spectral form ......................... 65 A.5.2 Recurrence formula ...................... 66 A.5.3 Spatial form .......................... 66 A.5.4 Singularity at the point ¢ = 0 ................ 67 A.5.5 Angular integrals ....................... 68 A.5.6 Proofs of eqns.(A.5.11) and (A.5.12) ............ 69 6 The effect of anomalous density of topographical masses 72 6.1 Topographical effects ......................... 73 6.2 One particular example: a lake ................... 74 6.3 Numerical results for the lake Superior ............... 77 6.4 Another example: the Purcell Mountains .............. 80 6.5 Conclusion ............................... 82 Formulation of the Stokes two-boundary-value problem with a higher-degree reference field 84 7.t A higher-degree reference gravitational potential .......... 85 7.2 Reference gravity anomaly ...................... 87 7.3 Formulation of the two-boundary-value problem .......... 88 7.4 Numerical results for V • ~'j~.~. - Vj.~ ~'~ ................... 91 7.5 Conclusion ............................... 95 A.7 Spherical harmonic representation of ~V .............. 96 Contents vii 8 A discrete downward continuation problem for geoid determination 99 8.1 Formulation of the boundary-value problem ............ 102 8.2 Poisson's integral ........................... 103 8.3 A continuous downward continuation problem ........... 105 8.4 Discretization ............................. 106 8.5 Jacobi's iterations ........................... 108 8.6 Numerical tests ............................ 109 8.6.1 Analysis of conditionality .................. 109 8.6.2 Analysis of convergency ................... 114 8.6.3 Power spectrum analysis of gravity anomalies ....... 116 8.6.4 Downward continuation of gravity anomalies ........ t17 8.7 Conclusion ............................... 123 A.8 Spherical radius of the near-zone integration cap .......... 125 B.8 Poisson's integration over near- and far-zones ........... 126 B.8.1 Near-zone contribution .................... 127 B.8.2 Truncation coetficients .................... 129 B.8.3 Far-zone contribution ..................... 131 B.8.4 Summary ........................... 131 The Stokes boundary-value problem on an ellipsoid of revolution 132 9.1 Formulation of the boundary-value problem ............ 133 9.2 The zero-degree harmonic of T .................... 135 9.3 Solution on the reference ellipsoid of revolution .......... 136 9.4 The derivative of the Legendre function of the 2nd kind ...... 137 9.5 The uniqueness of the solution ...... . ............. 138 9.6 The approximation up to O(eg) ................... 139 9.7 The ellipsoidal Stokes function .................... 142 9.8 Spatial forms of functions Ki(cos )X ................. 143 9.9 Conclusion ............................... 147 A.9 Power series expansion of the Legendre functions ......... 148 B.9 Sum of the series (9.49) ........................ 150 10 The external Dirichlet boundary-value problem for the Laplace equation on an ellipsoid of revolution 155 10.1 Formulation of the boundary-value problem ............ 156 10.2 Power series representation of the integral kernel .......... 157 t0.3 The approximation up to O(eo )2 ................... 160 10.4 The ellipsoidal Poisson kernel .................... 162 10.5 Residuals Ri(t,x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.6 The behaviour at the singularity ................... 166 10.7 Conclusion ............................... 167 A.10 Some sums of infinite series of Legendre polynomials ....... 168 viii Contents B.10 Program KERL ............................ 169 11 The Stokes boundary-value problem with ellipsoidal corrections in boundary condition 170 11.1 Formulation of the boundary-value problem ............ 172 11.2 The O(e~)-approximation ....................... 174 11.3 The 'spherical-ellipsoidal' Stokes function .............. 177 11.4 Spatial forms of functions M~(cos ¢) ................. 179 11.5 Conclusion ............................... 183 A.11 SpectrM form of etlipsoidal corrections ............... 183 B.11 An approximate solution to tridiagonal system of equations .... 185 C.11 Different forms of the addition theorem for spherical harmonics 186 12 The least-squares solution to the discrete altimetry-gravimetry boundary-value problem for determination of the global gravity model 192 12.1 Formulation of the boundary-value problem ............ 194 12.2 Paxametrization and discretization ................. 197 12.3 A least-squares estimation ...................... 198 12.4 The axisymmetric geometry ..................... 199 12.50verdetermination .......................... 205 12.6 Numerical examples .......................... 207 12.7 Conclusion ............................... 208 Summary 210 References 213 Index 221 List of symbols Hbrmander's constant alm A gravitationaI attraction of spherical Bouguer shell ~ A gravitational attraction of compensed/condensed masses ~ A gravitational attraction of topographical masses 5A direct topographical effect on gravity ob minor semi-axis of the reference ellipsoid best-fitting the geoid D depth of compensation first eccentricity e first eccentricity of reference elIipsoid eo E linear eccentricity of set of confocal ellipsoidal coordinate surfaces u =const. F free-air reduction F hypergeometric function g gravity of the Earth @ gravity disturbance Ag E free-air gravity anomaly fgxz low-frequency part of Ag F high-frequency part of Ag F G Newton's gravitational constant h ellipsoidal height H topographical height jre] cut-off degree of reference potential , ~,amj cut-off degree of anomalous potential K spherical Poisson's kernel Kell ellipsoidal Poisson's kernel e K spheroidal Poisson's kernel distance between points (r, )~f and (R, a') 0e distance between points (R, )~f and (R, 0') L distance between points (r, O) and (r', fY) 2L space of square-integrable functions on sphere M mass of the Earth c M mass of compensation/condensation layer g M masses below the geoid ~ M topographical masses N geoidal height x List of symbols jq truncation coefficients of Poisson's kernel high-degree part of jq P point on the Earth's surface point on the geoid Legendre polynomial of degree j Legendre functions of the 1st kind Q point on reference ellipsoid Legendre functions of the 2nd kind r radial distance % radius of the geoid R radius of mean sphere best-fitting the geoid Paul's coefficients S spherical Stokes's function ocleS sphericM-ellipsoidal Stokes's function sell ellipsoidal Stokes's function ~S secondary indirect topographical effect on gravity T anomalous gravitational potential harmonic outside the Earth ,T low-degree reference part of T Te high-degree part of T spherical harmonic coefficients of T T h anomalous gravitational potential harmonic outside the geoid Th,* high-degree part of T h ellipsoidal coordinate U U normal gravity potential V gravitational potential of the Earth V B gravitational potential of spherical Bouguer shell V c gravitational potential of compensated/condensed masses V g gravitational potential of masses below the geoid V R terrain roughness term ~ V gravitational potential of topographical masses yt, e spherical harmonic coefficients of ~ V in the space external ~jm to topographical masses vjt,i spherical harmonic coefficients of t V in the space internal m to topographical masses V o gravitational potential of compensated masses V ~ gravitational potential of condensed masses V ~ centrifugal potential ~V residual topographical potential low-degree part of ~V ,v ~ high-degree part of ~V ~w gravity potential disturbance W gravity potential of the Earth oW gauge value of gravity potential on the geoid Cartesian coordinates X~ y~ Z List of symbols xi surface spherical harmonic of degree j and order m azimuth ~O reduced co-latitude normal/reference gravity F gamma function Kronecker symbol ellipsoidal correction £h ellipsoidal correction Riemann zeta function co-latitude condition number longitude eigenvalue density of topographical masses density 0 averaged along topographical column density of compensated masses o~ mean density of topographical masses density contrast at the Moho ohoMO~A "O density of condensed masses X angular distance in ellipsoidM coordinates ¢ angular distance in spherical coordinates angular velocity of the Earth's rotation pair of angular spherical coordinates fl pair of angular ellipsoidal coordinates ~o full solid angle spherical cap of radius 0b~

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.