EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2017 7 1 0 Bottomonia suppression in an anisotropic quark-gluon plasma 2 n a RadoslawRyblewski1,a J 1InstituteofNuclearPhysics,PolishAcademyofSciences,PL-31342Kraków,Poland 3 ] Abstract.Abriefreviewofrecentstudiesonsuppressionofbottomoniainananisotropic h p quark-gluonplasmacreatedinheavy-ioncollisionsattheLHCispresented.Areasonable - agreementbetweenthemodelpredictionsfortheinclusiveRAA suppressionfactorand p thepreliminaryCMSexperimentaldataisfound.Thevaluesoftheshearviscositytothe e entropydensityratioextractedfromthecomparisonwiththedataliebetweenoneand h twotimesthegauge/gravitydualitylowerbound. Thesevaluesagreeverywellwiththe [ fluiddynamicalfitstothelighthadroncorrelationdataandconfirmthatthequark-gluon 1 plasmaisanearly-perfectfluid. v 4 4 6 1 Introduction 0 0 Oneofthemainobjectivesoftheongoingultra-relativisticheavy-ioncollisions(URHIC)studiesat . 1 theLargeHadronCollider(LHC)inCERNistoproduceandextractthepropertiesofanewstateof 0 hotnuclearmattercalledquark-gluonplasma(QGP)[1–3]. Anenormousamountoffluctuationand 7 correlationdatacollectedinURHICsuggeststhatthebulkofthecreatedmatterisastrongly-coupled 1 : system, which, to a great extent, behaves as a nearly-perfect relativistic fluid with the temperature- v averagedshearviscositytoentropydensityratio,η/s,intherange1/(4π)−3/(4π)[2,3]. Thespace- i X timeevolutionofthelattermaybequitepreciselydescribedwithintherecentformulationsofsecond- r orderrelativisticviscoushydrodynamics[4,5]. Lately,itwasalsoshownthatthedescriptionofthe a veryearlyevolutiontimesrequirescarefultreatmentofpotentiallylargelocalmomentumanisotropies in the system. For that purpose one should rather use an alternative fluid dynamics approach called anisotropichydrodynamicsinitsleading[6–19]ornext-to-leading[20,21]orderformulation. Thefirst-principlescalculationsofthequantumchromodynamics(QCD)equationofstatewithin Hard Thermal Loop (HTL) approach [22, 23] suggest that the high-temperature QGP may be well describedasadecoupledsystemofpartonicquasiparticleswiththepseudocriticaltransitiontempera- tureT ≈165MeV. OneofthesignaturesofQGPcreationisthe“melting”ofheavyhadronicstates c duetotheDebyescreeningphenomenon,commonlymeasuredwithrespecttotheproductioninp-p collisionswiththeR suppressionfactor. Thefitsoftherelativisticviscousfluidmodelstothelight AA hadronproductiondatasuggestthatatthetopLHCenergiesthesystemcreatedincentralcollisions reachesapeaktemperatureontheorderofT ≈ 600MeV[2]. Asaresult,thelighthadronicstates, 0 whichmostlydisassociatealreadyaroundT ,providealimitedsourceofinformationontheproper- c tiesofthehottestpartofthemedium. Atthesametimeitwasshownthatheavyquarkoniumstates, such as bottomonia, may survive up to temperatures on the order of ≈ 4T [24, 25], which makes c ae-mail:[email protected] EPJWebofConferences them apotential probe ofthe early stages/very centerof the createdfireball. Moreover, due totheir sequentialdisassociationpattern,theyprovideapossibilitytodistinguishbetweendifferentstagesof theQGPevolution[26]. Inthisproceedingscontributionwebrieflyreviewourmainresultsonthethermalsuppressionof Υ(1s)andΥ(2s)bottomoniumstatesinananisotropicQGPcreatedin2.76TeVPb-Pbcollisionsat theLHC[27]. Forthispurpose,weuseanupdatedpotential-basednon-relativisticQCD(pNRQCD) modeldevelopedinRefs.[28,29]coupledtotheanisotropichydrodynamicsmodelforthebackground evolutionconstructedinRef.[30]. Theupdatestothemodelinclude: (a)realistic(3+1)-dimensional QGP evolution within anisotropic hydrodynamics, (b) update of the mixing fractions of different bottomonia states based on the recent ATLAS, CMS, and LHCb measurements, and (c) improved centrality averaging procedure. Herein we show selected results on the inclusive R suppression AA factor of the Υ states as a function of the number of participants, N , and transverse momentum, part p , and compare them to the preliminary CMS results [31]. We observe that the employed model T provides a satisfactory description of the experimental data. Moreover, the restriction on the values oftheshearviscositytotherange1/(4π) < η/s < 2/(4π)extractedfromthecomparisontothedata agreequitewellwiththeresultsofthefluiddynamicalfitstothelighthadroncorrelationdata. The latterconfirmscreationofanalmostperfectQGPatLHCenergies. 2 Spheroidally momentum-anisotropic QGP MostofthemicroscopicmodelsoftheQGPearly-timedynamicssuggestthat,althoughQGPisini- tiallyhighly-anisotropicinthemomentumspace[32,33],itsevolutioncloselyfollowsthedissipative fluid dynamics equations [34, 35]. One can show that, due to the specific topology of the URHIC, inparticularrapidexpansionalongthebeam(z)directionandrelativelyslowexpansioninthedirec- tiontransversetoit,thedominantdissipativecorrectionstotheisotropicsingle-particlephase-space distributionfunction, f (pµ,xµ)= f (|p|,T(xµ)), (1) iso iso followfromtheanisotropybetweenthetransverse, p2 ≡ p2+p2,andlongitudinal, p2 ≡ p2,direction T x y L z in momentum space and result in a significant difference between the transverse and longitudinal (cid:112) pressure, P (cid:29) P . Here we take xµ = (t,x) and pµ = (E,p) where E = m2+ p2 is the particle T L on-shell energy. The most straightforward way to include these corrections is to use the following spheroidalRomatschke-Strickland(RS)formofparticledistributionfunction[36] (cid:18)(cid:113) (cid:19) f (pµ,xµ)= f (p,ξ(xµ),Λ(xµ))= f p2 +(1+ξ(xµ))p2,Λ(xµ) , (2) aniso aniso iso T L where−1≤ξ(xµ)<∞isthemomentum-spaceanisotropyparameter,Λ(xµ)isthetransversetemper- atureand f isanarbitraryisotropicdistributionfunction.Hereafteritisassumedthattheunderlying iso parton distribution function, f (pµ,xµ), is the same for the QGP background evolution as well as aniso forthequarkoniumbindingcalculations. 3 Fluid dynamics of the anisotropic background 3.1 Evolutionequations Withtheknowledgeofthesingle-particledistributionfunctiononecanderiveequationsofmotionfor the soft modes of the system using the standard relativistic kinetic theory formalism. In particular, the RS form (2) of the distribution function leads to the fluid dynamical equations of the so called CONF12 leading-order anisotropic hydrodynamics [6–9]. In the formulation employed in the present study theyareobtainedbytakingthelowest-nmomentummoments[7,8,12], (cid:90) (cid:90) (cid:90) N d3p Iˆµ1···µn ≡ dPpµ1pµ2···pµn, dP≡ dof , (3) (2π)3 E oftheBoltzmannequation, pµ∂ f =−C[f], (4) µ withthecollisionalkerneltreatedintherelaxation-timeapproximation, C[f]= p uµ(f − f (|p|,T(xν)))/τ . (5) µ eq eq In the above definitions N denotes the number of degrees of freedom, τ is the relaxation time, dof eq and f istheequilibriumdistributionwhichwetakeintheBoltzmannform f (|p|,T)=exp(−|p|/T). eq eq Withinthespheroidalansatz(2), f = f ,itissufficienttorestricttothezerothandthefirstmoments aniso whichleadstothefollowingsetofdynamicalequations, ∂ Iµ =u (Iµ −Iµ )/τ , (6) µ aniso µ eq aniso eq ∂ Iµν =u (Iµν−Iµν )/τ , (7) µ aniso µ eq aniso eq where we defined Iaµn1i··s·oµ,neq ≡ Iˆµ1···µnfaniso,eq. In Eq. (7) one may also make use of the energy- momentum conservation, which leads to the Landau matching condition, u Iµν = u Iµν , where µ eq µ aniso uµ = γ(1,v) is the fluid four-velocity defined in the Landau frame with uµu = 1. The forms of µ particlefour-current,Nµ ≡Iµ ,andtheenergy-momentumtensor,Tµν ≡Iµν ,may aniso,eq aniso,eq aniso,eq aniso,eq befoundthroughtheirtensordecompositioninasuitableorthonormalfour-vectorbasis{I} ,where LRF I ∈{u,X,Y,Z}[12]. Inthiswayoneobtains[6–19] Nµ =n uµ, (8) aniso,eq Tµν =εaniso,equµuν+Paniso,eq(XµXν+YµYν)+Paniso,eqZµZν, (9) aniso,eq T L seealso[37,38]. Projecting(8)and(9)onthebasisfour-vectorsandperformingmomentumintegrals oneobtainstheexplicitformofthethermodynamicvariablesenteringEqs.(8)and(9) (cid:112) naniso(Λ,ξ)=niso(Λ)/ 1+ξ, (10) εaniso(Λ,ξ)=R(ξ)εiso(Λ), (11) Paniso(Λ,ξ)=R (ξ)Piso(Λ), (12) T T T Paniso(Λ,ξ)=R (ξ)Piso(Λ), (13) L L L where Piso = Piso = Piso, and R are known analytic functions [7]. Transforming to the labora- T L tory frame and expanding equations (6) and (7) one o√btains the explicit equations of motion for Λ(τ,x ,ς), ξ(τ,x ,ς) and u(τ,x ,ς) [30], where τ = t2−z2 is the longitudinal proper-time and T T T ς = tanh−1(z/t) is the space-time rapidity. Following the usual methodology we take f = f and iso eq restrictourselvestothemasslesscase,whichgivesthewellknownrelationsfortheconformalsystem, εiso(T)=3Piso(T)=3Tniso(T)∼T4. EPJWebofConferences 3.2 Setup For the numerical simulations of the hydrodynamic background evolution we choose the initial proper time τ = 0.3 fm. The values of the initial central temperature in central collisions 0 T ∈ {552,546,544} MeV are determined for each value of 4πη/s ∈ {1,2,3}, respectively, in or- 0 dertoreproducethefinalcharged-particlemultiplicitymeasuredintheexperiment. Theinitialprofile forthetransversetemperatureΛ(τ = τ ,x ,ς)inthetransverseplanefollowsfromtheinitialenergy 0 T density profile which is set by the mixed optical Glauber model with mixing factor κ = 0.145. binary Theinelasticcross-sectionistakentobeσ = 62mb. Inthespatialrapiditydirection, weusethe NN following phenomenological distribution consistent with the limited fragmentation picture at large rapidity[39] (cid:34) (ς−∆ς)2 (cid:35) f(ς)≡exp − Θ(|ς|−∆ς) . (14) 2σ2 ς InEq.(14)theparameters∆ς = 2.5andσ = 1.4arefittedtoreproducethepseudorapiditydistribu- ς tionoflightchargedhadronsmeasuredintheexperimentandΘistheHeavisidestepfunction. 4 Quarkonium potential in anisotropic QGP Following findings of the HTL resummed perturbation theory calculations [40] it is assumed that the static heavy quarkonium potential is complex valued, V = (cid:60)[V]+i(cid:61)[V]. For the real part of thepotentialoneusestheresultsobtainedforafinite-temperaturespheroidallyanisotropicQGP[41] described by the distribution function (2). It is based on the internal energy of the states calculated fromtheKarsch-Mehr-Satzform[42]ofthefreeenergy[29], a 2σ 0.8σ (cid:60)[V]=− (1+µ)e−µr+ (1−e−µr)−σre−µr− , (15) r µ m2r b wherea≡α C =0.385istreatedasaparameterwhichisfittedtothelatticeQCDdatatoreproduce s F screened Coulomb part of quarkonium potential [43], σ = 0.223GeV2 is the string tension also obtainedfromlatticeQCDcalculations[43],andm =4.7GeVistheconstituentmassofthebottom b quark. Theanisotropicscreeningmassµ=G(ξ,θ)m isexpressedthroughtheisotropicDebyemass (cid:112) D m = 1.4 1+N /6g Λ and the function G which depends on the anisotropy ξ and the θ angle D f s betweenthebeamlinedirectionandthelineconnecting QQ¯ pair[29]. Thefactor1.4isincludedto accountforhigher-ordercorrectionsdeterminedfromlatticesimulations[44],N =2isthenumberof √ f quarkflavorscontributingtothemedium,andg = 4πα ,wherewetakethree-loop-runningstrong s s couplinggivingα (5GeV)=0.2034. s The imaginary part of the potential is obtained using leading-order perturbative calculation per- formedinthesmallanisotropylimit[45], (cid:61)[V]=−α C Λ(cid:8)φ(µr)−ξ(cid:2)ψ (µr,θ)+ψ (µr,θ)(cid:3)(cid:9), (16) s F 1 2 whereC =4/3istheQCDcolorfactor,andφandψarespecialfunctionsexpressibleintermsofthe F MeijerG-function. 5 Quarkonium local decay rate UsingtheformofthequarkoniumpotentialdefinedinEqs.(15)-(16)wesolvethethree-dimensional Schrödinger equation for the complex-valued binding energies of the states, E , as functions of bind CONF12 Figure1: (Coloronline)RealandimaginarypartsoftheΥ(1s)bindingenergyasafunctionofΛ/T c ratioforvariousvaluesofξ,see[29]fordetails. bulkvariablesξandΛ[46]. TheexemplarresultsforbindingenergyofΥ(1s)stateareshowninthe Fig.1. Onemayobservethatintheanisotropicsystemthedisassociationpoint,definedasΛatwhich (cid:61)[E ] = (cid:60)[E ], isshiftedtowardshigherT, whichmeansthattheanisotropyξ > 0causesthe bind bind statestomeltathighertransversetemperatures. Whiletherealpartofthebindingenergydefinesifthestateisbound(E ≤0)ornot(E >0), bind bind theimaginarypartgivestheinformationaboutthelocaldecayrate(width)Γofthestate. Computing thequantummechanicaloccupationnumberoneobtainstherelation (cid:40) 2(cid:61)[E ] (cid:60)[E ]>0 Γ(Λ,ξ)= bind bind , γ =10GeV (cid:60)[E ]≤0 dis bind whereγ =10GeVisphenomenologicalparameterwhichsetsthedecayrateoftheunboundstates. dis Knowing E (ξ,Λ) from the solution of the Schrödinger equation and the space-time depen- bind denceΛ(τ,x ,ς)andξ(τ,x ,ς)fromthehydrodynamicevolutionoftheQGP(seeSec.3),onemay T T constructE (τ,x ,ς). bind T 6 R suppresion factor AA TheR suppressionfactorisobtainedbytheintegrationofthelocaldecayrate, AA (cid:90) τf ζ(p ,x ,ς)≡Θ(τ −τ ) dτΓ(τ,x ,ς), (17) T T f form T max(τform,τ0) andsubsequentexponentiationoftheresult,R (p ,x ,ς)=exp(−ζ(p ,x ,ς)).Theformationtime AA T T T T (cid:113) ofthestateisτ (p )=τ0 γ=τ0 E /MwithMbeingthemassofthestateandE = p2 +M2 form T form form T T T itstransverseenergy.Therest-frameformationtimesτ0 areassumedtobeinverselyproportionalto form thevacuumbindingenergy[47],whichgivesτ0 =0.2,0.4,0.6,0.4,0.6fmforΥ(1s),Υ(2s),Υ(3s), form χ , χ states, respectively. The final time τ is defined through the condition T(τ,x ,ς) ≤ T , b1 b2 f f T c whereT = ΛR1/4(ξ). Forthespace-timedynamicsofthequarkoniathemselvesweuseasimplistic EPJWebofConferences ��� ��� �πη/�=� �πη/�=� ������ ��<����=<�|�����|�<��������� Υ��ππ(�ηη�//��)�==���������������� ��� ���=��|�-��|��<�����%��� ΥΥ��ππ((��ηη��//��))��==������������������������������ Υ(��)��������������� ��� Υ(��) ���� � � � � � ��� ��� Υ(��) ��� ��� Υ(��) ��� Υ(��) ��� ��� � ��� ��� ��� ��� � � �� �� �� ����� ��(���) Figure2: (Coloronline)InclusiveR fortheΥ(1s)andΥ(2s)statesfordifferentvaluesofη/sasa AA functionofnumberofparticipants N (left)andtransversemomentum p (right)comparedtothe part T CMSexperimentaldata(symbols)[31]. assumption that, once generated, they follow the Bjorken flow solution, which means that hereafter wemayputς =y. Integrationoverthespatialcoordinates (cid:82) d2x n(x ,y)R (p ,x ,y) RAA(pT,y)= T (cid:82) T AA T T , (18) d2x n(x ,y) T T takes into account the fact that the generation of the quarkonia is assumed to be proportional to the localnumberdensityofplasmapartonsn(x ,ς =y)=naniso(Λ(τ ,x ,ς),ξ(τ ,x ,ς)). T 0 T 0 T BeforeperformingcomparisonwiththedataonehastoperformcertainaveragesoftheR tak- AA ing into account proper momentum cuts according to the experimental ones. For the transverse- momentumaverageweusetheE−4measuredbyCDF[48]athigh p T T (cid:82) pT,maxdp2 R (p ,y)E−4 RAA(y)≡ pT,min(cid:82) pT,TmaxdApA2ET−4 T . (19) pT,min T T For the rapidity average we take flat distribution. In the above definitions the impact parameter, b, dependence is implicit. In order to average over the centrality we first convert impact parameter to centrality classes, C, using Glauber formalism. Then we integrate over centrality using probability functione−C/20whichreproducestheexperimentalmeasurement[49].Theproceduredescribedabove resultsinthesocalled“raw”R foreachstate. InordertocalculatetheinclusiveR wehaveto AA AA take into account the feed-down from decays of the excited states. For that purpose construct the linearcombinationsRΥ(1s) = (cid:80) fΥ(1s) andRΥ(2s) = (cid:80) fΥ(2s)Ri,raw whereweuserecent p -averaged AA i i AA i i AA T feed-downfractionsfromATLAS,CMSandLHCbdatameasuredinp-pcollisions. Inparticularwe use fΥ(1s) = {0.618,0.105,0.02,0.207,0.05} for i ∈ {Υ(1s),Υ(2s),Υ(3s),χ ,χ }, respectively. For i b1 b2 fΥ(2s) ={0.5,0.5}wetakei∈{Υ(2s),Υ(3s)}[50]. i 7 Results IntheleftpanelofFig.2wepresentthecomparisonofthemodelpredictionsfortheinclusiveR AA factor of Υ(1s) and Υ(2s) states as a function of number of participants, N , with the preliminary part CONF12 experimentaldatafrom2.76TeVPb-PbcollisionsmeasuredbyCMSattheLHC[31].Theresultsare obtainedforvariousvaluesofη/s. Ourmodelseemstoprovideareasonabledescriptionofthedata exceptforΥ(2s)inthemostperipheralcollisions. In the right panel of Fig. 2 we present the analogue comparison as in the left panel except as a functionoftransversemomentum. Weagainobserveanoverallgoodagreementwiththedata, with theslowriseatlarge p resultingfromthetimedilationoftheformationtimes. Ourresultsuggests T that the underlying assumption that the states are decoupled from the QGP is in a good agreement with reality. Both, N and p , dependence prefer small values of 1 < 4πη/s < 2, which stays in part T agreementwiththerecenthydrodynamicfitstolighthadroncorrelationdata. 8 Conclusions In this proceedings contribution we briefly presented our recent results on the thermal suppression of bottomonia in the anisotropic quark-gluon plasma produced in 2.76 TeV Pb-Pb collisions at the LHC [27]. For the study we used a pNRQCD model developed in Refs. [28, 29] and upgraded in Refs. [27, 51] to include: (a) realistic (3+1)-dimensional QGP evolution within anisotropic hydro- dynamicsapproach[30],(b)updatedmixingfractionsofthebottomoniastatesrecentlymeasuredby ATLAS, CMS, and LHCb, and (c) improved centrality averaging procedure. The presented results ontheR suppressionfactorshowreasonableagreementwiththedata. Basedonthecomparisonof AA number of participants N and transverse-momentum p dependence of the model inclusive R part T AA suppressionfactorwiththerecentCMSexperimentaldata[31]wefindthatthevaluesofη/slieinthe rangebetween1/(4π)and2/(4π).Thesevaluesareinagreementwiththemostrecentfluiddynamical fitstothelighthadroncorrelationdata,whichconfirmsthattheQGPproducedattheLHCenergiesis analmost-perfectfluid. Acknowledgements AuthorwouldliketothankMichaelStricklandandBrandonKrouppaforthefruitfulcollaboration. Thiswork wassupportedbythePolishNationalScienceCentergrantNo.DEC-2012/07/D/ST2/02125. References [1] W.Florkowski,PhenomenologyofUltra-RelativisticHeavy-IonCollisions(2010) [2] C.Gale,S.Jeon,B.Schenke,Int.J.Mod.Phys.A28,1340011(2013),1301.5893 [3] A.Jaiswal,V.Roy,Adv.HighEnergyPhys.2016,9623034(2016),1605.08694 [4] G.S. Denicol, H. Niemi, E. Molnar, D.H. Rischke, Phys. Rev. D85, 114047 (2012), [Erratum: Phys.Rev.D91,no.3,039902(2015)],1202.4551 [5] A.Jaiswal,Phys.Rev.C87,051901(2013),1302.6311 [6] W.Florkowski,R.Ryblewski,Phys.Rev.C83,034907(2011),1007.0130 [7] M.Martinez,M.Strickland,Nucl.Phys.A848,183(2010),1007.0889 [8] M.Martinez,M.Strickland,Nucl.Phys.A856,68(2011),1011.3056 [9] R.Ryblewski,W.Florkowski,J.Phys.G38,015104(2011),1007.4662 [10] R.Ryblewski,W.Florkowski,Eur.Phys.J.C71,1761(2011),1103.1260 [11] R.Ryblewski,W.Florkowski,Phys.Rev.C85,064901(2012),1204.2624 [12] M.Martinez,R.Ryblewski,M.Strickland,Phys.Rev.C85,064913(2012),1204.1473 [13] L.Tinti,W.Florkowski,Phys.Rev.C89,034907(2014),1312.6614 EPJWebofConferences [14] M.Nopoush,R.Ryblewski,M.Strickland,Phys.Rev.C90,014908(2014),1405.1355 [15] L.Tinti,Phys.Rev.C92,014908(2015),1411.7268 [16] M.Nopoush,M.Strickland,R.Ryblewski,D.Bazow,U.Heinz,M.Martinez,Phys.Rev.C92, 044912(2015),1506.05278 [17] L.Tinti,Phys.Rev.C94,044902(2016),1506.07164 [18] M.Alqahtani,M.Nopoush,M.Strickland,Phys.Rev.C92,054910(2015),1509.02913 [19] M.Nopoush,M.Strickland,R.Ryblewski(2016),1610.10055 [20] D.Bazow,U.W.Heinz,M.Strickland,Phys.Rev.C90,054910(2014),1311.6720 [21] E.Molnar,H.Niemi,D.H.Rischke,Phys.Rev.D93,114025(2016),1602.00573 [22] N. Haque, A. Bandyopadhyay, J.O. Andersen, M.G. Mustafa, M. Strickland, N. Su, JHEP 05, 027(2014),1402.6907 [23] S. Mogliacci, J.O. Andersen, M. Strickland, N. Su, A. Vuorinen, JHEP 12, 055 (2013), 1307.8098 [24] A.Mocsy,P.Petreczky,M.Strickland,Int.J.Mod.Phys.A28,1340012(2013),1302.2180 [25] A.Andronicetal.,Eur.Phys.J.C76,107(2016),1506.03981 [26] F.Karsch,D.Kharzeev,H.Satz,Phys.Lett.B637,75(2006),hep-ph/0512239 [27] B.Krouppa,R.Ryblewski,M.Strickland,Phys.Rev.C92,061901(2015),1507.03951 [28] M.Strickland,Phys.Rev.Lett.107,132301(2011),1106.2571 [29] M.Strickland,D.Bazow,Nucl.Phys.A879,25(2012),1112.2761 [30] R.Ryblewski,M.Strickland,Phys.Rev.D92,025026(2015),1501.03418 [31] (2011) [32] R.Ryblewski,J.Phys.G40,093101(2013) [33] M.Strickland,ActaPhys.Polon.B45,2355(2014),1410.5786 [34] M.P.Heller,R.A.Janik,P.Witaszczyk,Phys.Rev.Lett.108,201602(2012),1103.3452 [35] J.Jankowski,G.Plewa,M.Spalinski,JHEP12,105(2014),1411.1969 [36] P.Romatschke,M.Strickland,Phys.Rev.D68,036004(2003),hep-ph/0304092 [37] W.Florkowski,Phys.Lett.B668,32(2008),0806.2268 [38] W.Florkowski,R.Ryblewski,ActaPhys.Polon.B40,2843(2009),0901.4653 [39] P.Bozek,I.Wyskiel-Piekarska,Phys.Rev.C85,064915(2012),1203.6513 [40] M.Laine,O.Philipsen,P.Romatschke,M.Tassler,JHEP03,054(2007),hep-ph/0611300 [41] A.Dumitru,Y.Guo,A.Mocsy,M.Strickland,Phys.Rev.D79,054019(2009),0901.1998 [42] F.Karsch,M.T.Mehr,H.Satz,Z.Phys.C37,617(1988) [43] P.Petreczky,J.Phys.G37,094009(2010),1001.5284 [44] O. Kaczmarek, F. Karsch, F. Zantow, P. Petreczky, Phys. Rev. D70, 074505 (2004), [Erratum: Phys.Rev.D72,059903(2005)],hep-lat/0406036 [45] A.Dumitru,Y.Guo,M.Strickland,Phys.Rev.D79,114003(2009),0903.4703 [46] M. Margotta, K. McCarty, C. McGahan, M. Strickland, D. Yager-Elorriaga, Phys. Rev. D83, 105019(2011),[Erratum: Phys.Rev.D84,069902(2011)],1101.4651 [47] F.Karsch,R.Petronzio,Phys.Lett.B193,105(1987) [48] D.Acostaetal.(CDF),Phys.Rev.Lett.88,161802(2002) [49] S.Chatrchyanetal.(CMS),JHEP05,063(2012),1201.5069 [50] M.Strickland,J.Phys.Conf.Ser.432,012015(2013),1210.7512 [51] B.Krouppa,M.Strickland,Universe2,16(2016),1605.03561