ebook img

Bottom-Up Self-Organization in Supramolecular Soft Matter: Principles and Prototypical Examples of Recent Advances PDF

305 Pages·2015·17.295 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bottom-Up Self-Organization in Supramolecular Soft Matter: Principles and Prototypical Examples of Recent Advances

Springer Series in Materials Science 217 Stefan C. Müller Jürgen Parisi Editors Bottom-Up Self-Organization in Supramolecular Soft Matter Principles and Prototypical Examples of Recent Advances Springer Series in Materials Science Volume 217 Series editors Robert Hull, Charlottesville, USA Chennupati Jagadish, Canberra, Australia Richard M. Osgood, New York, USA Jürgen Parisi, Oldenburg, Germany Tae-Yeon Seong, Seoul, Korea, Republic of (South Korea) Shin-ichi Uchida, Tokyo, Japan Zhiming M. Wang, Chengdu, China TheSpringerSeriesinMaterialsSciencecoversthecompletespectrumofmaterials physics,includingfundamentalprinciples,physicalproperties,materialstheoryand design.Recognizingtheincreasingimportanceofmaterialsscienceinfuturedevice technologies, the book titles in this series reflect the state-of-the-art in understand- ingandcontrollingthestructureandpropertiesofallimportantclassesofmaterials. More information about this series at http://www.springer.com/series/856 ü ü Stefan C. M ller J rgen Parisi (cid:129) Editors Bottom-Up Self-Organization in Supramolecular Soft Matter Principles and Prototypical Examples of Recent Advances 123 Editors StefanC. Müller JürgenParisi Department ofExperimental Physics Energy andSemiconductorResearch University of Magdeburg Laboratory,Departmentof Physics Magdeburg University of Oldenburg Germany Oldenburg Germany ISSN 0933-033X ISSN 2196-2812 (electronic) SpringerSeries inMaterials Science ISBN978-3-319-19409-7 ISBN978-3-319-19410-3 (eBook) DOI 10.1007/978-3-319-19410-3 LibraryofCongressControlNumber:2015941866 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface The physics of self-organization, originally proposed by Erwin Schrödinger 70 years ago for the case of the living cell, covers a broad spectrum of complex nonlinear phenomena, ranging from self-assembly under conditions near thermo- dynamicalequilibriumtodissipativestructureformationfarfromequilibrium.Their mutual interplay can give rise to increasing degrees of hierarchical order. Both, conceptsandmethodsoftheaboveresearcharea havebeenefficientlyappliedtoa huge variety of scientific disciplines (for example, physics, chemistry, biology, biomedicine),sinceuniversalfeaturesemergefromtheoryandexperimentsthatare characteristic for self-organized spatio-temporal patterns as well as the underlying elementary mechanisms. In the present volume, we look at the crucial role of spatial and temporal order duringemploymentofprinciplesdevelopedonmacroscopicandmesoscopicscales tostructureformationoccurringonnanoscales,whichoccupiesthefocusofinterest inthefrontiersofscience.Incaseofmesoscopicallyorderedsoftmatter,exhibiting intriguing novel properties as compared to the single building blocks, often called bottom-up approach for nanolithography, particular emphasis will be put to dis- tinguish between ordering processes under nonequilibrium conditions and those arising under situations close to equilibrium. Prototypical examples of such a material class are discussed to some extent, taking into account both fundamental and application relevant aspects. We point out analogies and characterize differ- ences, hence, efforts made to disclose common features in the mechanistic description of these phenomena. This may slightly narrow the large gap between nature and the present status of omnipresent nanotechnology. The editors would like to thank all authors for constructive efforts to prepare their manuscripts and to contribute to the rich variety of topics included in this volume. Special thanks are due to Claus Ascheron and others from Springer Heidelberg for continuous commitment, efficient support, and skillful technical v vi Preface assistance. Furthermore, we gratefully acknowledge fruitful collaboration with KinkoTsujiandPatriciaDähmlowaswellasvaluablebenefitfromDorotheaErndt, Elzbieta Chojnowski, and Grit Schürmann during the finalization of the present book. Magdeburg Stefan C. Müller Oldenburg Jürgen Parisi Contents 1 Hierarchical Self-organization and Self-assembly: Metal Nanoparticles in Polymer Matrices. . . . . . . . . . . . . . . . . . . 1 Tomohiko Yamaguchi, Nobuhiko Suematsu and Hitoshi Mahara 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Self-organization in Chemistry . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Self-assembly and Dissipative Structure. . . . . . . . . . . 2 1.2.2 Advantages of Each Self-organization . . . . . . . . . . . . 2 1.2.3 Self-organization of Hierarchy by Mutual Assistance Between Self-assembly and Dissipative Structure. . . . . . . . . . . . . . . . . . . . . 3 1.3 Self-organization of Hierarchic Structure . . . . . . . . . . . . . . . . 5 1.3.1 Metal Nanoparticle as Conducting Material . . . . . . . . 5 1.3.2 Dissipative Structure-Assisted Self-assembly of Metal Nanoparticles . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Aggregate Structure and Dynamic Percolation in Microemulsions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Martin Kraska, Björn Kuttich and Bernd Stühn 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Nanoscopic Structure of Microemulsions. . . . . . . . . . . . . . . . 12 2.2.1 Stability and Phase Diagrams. . . . . . . . . . . . . . . . . . 12 2.2.2 Droplet Phase: Tuning of Droplet Size and Concentration. . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Temperature Stability of the Droplet Phase . . . . . . . . 23 2.2.4 Critical Behaviour—Aggregation in the Droplet Phase . . . . . . . . . . . . . . . . . . . . . . . . 27 vii viii Contents 2.3 Conductivity in Microemulsions: Aggregation and Dynamic Percolation. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 Introduction: Static and Dynamic Percolation. . . . . . . 31 2.3.2 Dielectric Properties of Microemulsions. . . . . . . . . . . 34 2.4 Tuning of Droplet-Droplet Interaction . . . . . . . . . . . . . . . . . . 46 2.4.1 Shifting the Percolation Threshold by Changing the Continuous Phase . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.2 Polymeric Additives I: Homopolymers Confined in Droplets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.4.3 Polymeric Additives II: Droplet Bridging Versus Decoration. . . . . . . . . . . . . . . . . . . . . . . . . . 53 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Electric Field Effects in Chemical Patterns. . . . . . . . . . . . . . . . . . 65 Patricia Dähmlow, Chaiya Luengviriya and Stefan C. Müller 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.1 One- and Two-Dimensional Systems. . . . . . . . . . . . . 67 3.2.2 Three-Dimensional Geometry . . . . . . . . . . . . . . . . . 67 3.2.3 Microemulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3.1 One-Dimensional Waves . . . . . . . . . . . . . . . . . . . . . 70 3.3.2 Two-Dimensional Waves. . . . . . . . . . . . . . . . . . . . . 72 3.3.3 Three-Dimensional Experiments . . . . . . . . . . . . . . . . 73 3.3.4 Microemulsions . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 Charge Transport in Chain of Nanoparticles. . . . . . . . . . . . . . . . 83 L.V. Govor and J. Parisi 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Positioning of Nanoparticle Chains in Between Nanogap Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Electrical Field Dependence of Charge Transport in Chain of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4 Analysis of the Conductivity in Chain of Particles . . . . . . . . . 93 4.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Influence of Nanoparticles on the Mechanism and Properties of Nanocomposites Obtained in Frontal Regime. . . . . . . . . . . . . . 101 A.O. Tonoyan, S.P. Davtyan and S.C. Müller 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Contents ix 5.2 Polymerization Acrylamide (AAM) Under Different Thermal Conditions. . . . . . . . . . . . . . . . . . . . . . . . 102 5.2.1 Polymer Nanocomposites with a Uniform Distribution of Nanoparticles in a Polymer Matrix Synthesized by Frontal Polymerization . . . . . . 102 5.2.2 The Influence of Thermal Conditions of Polymerization on the Structure of Polymer Nanocomposites with Polyacrylamide Binder. . . . . . . . . . . . . . . . . . . 104 5.3 Frontal Polymerization of MMA in the Presence of SiO Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2 5.3.1 The Influence of the Filling Degree of SiO 2 Particles on the Frontal Polymerization Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.4 The Thermo-Physical Characteristics of Nanocomposite Samples Obtained Under Conditions of Frontal Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5 Influence of Single-Wall Nanotubes on the Stability of Frontal Modes and Properties of Polymer Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.6 Influence of Amounts of SWCNT on the Characteristics of Frontal Copolymerization. . . . . . . . . . . . . . . . . . . . . . . . . 112 5.7 Physico-Mechanical, Dynamic-Mechanical and Thermo-Chemical Properties of Nanocomposites. . . . . . . . 115 5.8 SiO Nanofiller Impact on Crystallization Kinetics 2 During Adiabatic Anion Polymerization of ε-Caprolactam . . . . 118 5.8.1 Separation of Polymerization and Crystallization Processes . . . . . . . . . . . . . . . . . . 118 5.9 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Nonlinear Dynamics of Reactive Nanosystems: Theory and Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Y. De Decker, D. Bullara, C. Barroo and T. Visart de Bocarmé 6.1 The Chemical Master Equation. . . . . . . . . . . . . . . . . . . . . . . 129 6.1.1 The Chemical Fokker-Plank Equation . . . . . . . . . . . . 132 6.2 Field Emission and Field Ion Microscopy . . . . . . . . . . . . . . . 135 6.3 Bistability in the H + O /Rh System . . . . . . . . . . . . . . . . . . 137 2 2 6.4 Oscillations During the NO + H Reaction on Platinum. . . . . 143 2 2 6.5 Discussion and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . 149 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.